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Arguments are presented towards the identification of a molecular center
undergoing a linear E®e Jahn-Teller effect as a quasiparticle of fractional
statistics. The relevance of Jahn—Teller quasiparticles for the description of
the type-II superconductivity is briefly discussed.
PACS numbers: 31.10.+z, 75.20.Hr

1. Introduction

The Jahn-Teller (JT) effect [1] describes the interaction between the two
components of a degenerate electronic state (E) through a, usually degenerate,
pair of nuclear modes (e). An unusual aspect of the E®e-type JT effect is that
the Born-Oppenheimer electronic wave functions, which diagonalize the electronic
Hamiltonian in the fixed-nuclei approximation, undergo a sign change when the
nuclear coordinates traverse a closed path around the conical intersection [2-4]. As
it has been shown by Mead and Truhlar [5], the resulting double-valuedness of the
electronic wave functions can be removed, but only at the expense of introducing
a vector-potential-like term into the effective Hamiltonian for the nuclear motion,
which has been termed the molecular Aharonov-Bohm effect [6].

The above-mentioned sign change is a special case of Berry's geometrical
phase [7] which holds implications for topics as diverse as the theory of the frac-
tional quantum Hall effect [8], the optical activity of a helical fiber [9], super-
conductivity [10], and gauge field theories [11]. A more general discussion in the
context of molecular physics can be found in the review article by Mead [12].

In the present paper we argue that JT centers can, in some applications,
be considered as quasiparticles of fractional statistics. Thus in Sec. 2 a brief
re-derivation of the adia&atic analytical solution of the linear E®e-type Hamil-
tonian is presented and some of its properties are discussed. The arguments in
favor of the fractional nature of the statistics of the JT quasiparticles and their
relevance for description of the type-II superconductivity are discussed in Sec. 3.
Some conclusions concerning high-Tc superconductors are presented in Sec. 4.
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2. The linear E ® e-type Jahn-Teller system

2.1. An adiabatic solution

In the following presentation we follow approach of Bersuker and Polinger
[13]. The vibrational Hamiltonian of the linear E®e-type JT system (i.e. without
considering the quadratic terms of the vibronic interactions) is usually written in
the form

The first term represents the kinetic and potential energies of twodimensional
harmonic oscillator. The second term represents a linear coupling between the
vibrational modes and a pair of degenerate electronic states [ψ θ , ψε ] , and &x and
&y are Pauli matrices. The electronic eigenfunctions ψθ and Ψε are often described
by two-component vection (spinors)

i.e. they can formally be regarded as two different states of the same particle which
differ in the value of the projection of the vector 1/2 b-, the latter being analogous
(in its properties) to the spin 1/2 vector. This quantity, usually called the "en-
ergy spin" or pseudospin [14], is a vector in some auxiliary "energy" space. The
projection of the energy spin on the z-axis has only two values ±1/2.

In the absence of vibronic interaction the symmetry of the E®e-type JT sys-
tem is described at least by the group SU(2) xSU(2). Taking into account the linear
vibronic interaction, the symmetry of the system is lowered from the six-parameter
group SU(2) x SU(2) to the one-parameter axial group O(2) of twodimensional ro-
tations [15]. An arbitrary element of this group has the form

where Lz is vibrational momentum operator, and the corresponding inflnitesimal
operator

commutes with the Hamiltonian (1), i.e. it is an integral of motion. In the "static"
limit (Ρθ = Ρε = 0) Hamiltonian (1), in polar coordinates (Q θ = p cos φ, Qε =
p sin φ), can be diagonalized via unitary transformation

giving the adiabatic electronic wave functions
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and adiabatic energies

The symmetry of the axial group O(2) of twodimensional rotations is then reflected
. via rotational symmetry of the adiabatic potential energy surfaces of Eq. (7). The

quantity EST = Q2 /2420 is called the JT stabilization energy.
In the strong-coupling limit, i.e. for EST » ω0, an analytical (approximate)

solution of the vibrational Hamiltonian (1) is possible. Denoting the eigenfunctions
of the Hamiltonian by W = Φ/', the Hamiltonian for Φ(p, φ) in the adiabatic
basis (6) becomes

where Lz = —i∂/∂φ is the angular momentum operator. Since for the linear E®e
JT system Ĵz = Lz + (1/2)δz is an integral of motion, and furthermore in the
adiabatic basis S+JzS = L„ i.e., the Hamiltonian (8) commutes with operator
Lz , then this means that the eigenfunctions e fjφ/ 2π of the operator Lz are also
eigenfunctions of the Hamiltonian (8). In other words, the angular and radial
motions can be separated and the wave function Φ(p, φ) can be taken in the form

The Hamiltonian (8) for the radial X(p) wave function acquires the form

where the operator Lz = S+Jz Ŝ has been substituted by its quantum number j.
On passing from (1) to (10) no additional approximations are introduced,

and in this sense (10) is the exact Hamiltonian. Here the adiabatic approximation
is equivalent to neglect of the term —ħ 2j 2 σx /2p 2 which mixes the two sheets of
the adiabatic potential energy surface. Then

and

The "dynamical" potential energy E± (p) differs from the "static" one of Eq. (7)
by the centrifugal energy term hτ 2j 2 /2p2. This term is always nonzero due to
semi-integer values of the quantum number j, the eigenvalue of the operator
Jz = Lz + (1/2)&z , j = ±1/2,±3/2 ,±5/2,... Finally, the total adiabatic wave func-
tion of the linear E®e JT system can be recasted in the form

For the lowest vibronic states localized near the bottom of the adiabatic potential
Ε_(p0 ) the potential energy (12) can be replaced by first terms of its power series
expansion with respect to the displacement τ = p - p0 , and one can solve the
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Schrödinger equation for X(τ) with Hamiltonian (11) in harmonic approximation.
The energies of the vibronic states are then

while the wave functions X n (τ) are expressed as Hermite polynomials describing
radial harmonic vibrations near the point p0, with frequency ωE.

Let us notice that in the "exact" adiabatic solution sketched above, the
widely celebrated gauge-structure, Berry's phase, and other peculiarities of the
linear E®e JT problem do not appear explicitly. However, the adiabatic electronic
wave functions ψ± of Eq. (6) change their sign under the rotation φ → φ + 2π,
while the total wave functions (13) remain unchanged because j is semi-integer
due to symmetry of the problem. On the other hand, if one curls out the change of
the 'ign of the electronic wave functions (6) for instance by multiplying them by
the phase factor e --iφ/ 2 , this restores the single-valuedness, but on the expense of
introducing a non-zero vector potential term in Eq. (8) by replacing Lz —> Lz +iΑφ ,
with Αφ = á &0. The effective Hamiltonian for the motion of the nuclei thus
contains a gauge-field term, the presence of which is unavoidable if the electronic
eigenkets (6) are to be single valued functions of φ . If one takes the curl of the
vector potential Á φ to flnd the corresponding (pseudo) magnetic field , one finds
a δ function at the origin (p = 0). The nonzero diagonal vector potential Α^ of
the solenoidal type is the origin of the intrinsic Aharonov-Bohm effect [6]. As it
has been pointed out by Longuet-Higgins et al. [2] and by Mead [16] it leads to
half-odd integral quantization numbers for pseudorotational motion of nuclei, thus
restoring results of derivations (6)—(12).

2.2. Some properties of the linear JT system

The molecular system undergoing linear E®e JT interaction possesses rather
peculiar properties. Let us first notice that similarly to the case of a normal
molecule, the lowest (ground) electronic state of the JT system is accompanied
by (roughly equally spaced) levels of radial harmonic vibration, and each of the
vibrational levels is accompanied by a rotational fine stucture (cf. Eq. (14)).
But unlike the case of normal molecules, the (pseudo)rotational levels are quan-
tized with fractional quantum numbers, and do not describe real rotations of the
molecule, when all the atoms move around a common axis, but the wave of distor-
tions when each of the atoms moves (within a proper phase) around its equilibrium
position. This is illustrated in Fig. 1 for the case of a pseudorotating triatomic Χ3
molecule, defining the intramolecular coordinates Qθ and Qε as follows:

where Δrij denote the change of the bond length between the i-th and the j-th
atoms of Fig. 1. Denoting Q θ= p0 cos φ,Qε=p0 sinφand transforming the
atomic displacements to Cartesian coordinates one sees that when moving along
the bottom of the trough (Eq. (12)) the atoms of the triatomic molecule circum-
scribe coherent circles (Fig. 1). The shape of the nuclear frame changes during
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such a motion transforming the equilateral triangle into an isosceles one. This can
be thought as a wave of distortions propagating around the geometric center of
the molecule. however, the molecular pseudorotation, in fact, takes place in the
space of internal molecular coordinates Qθ and Qε .

Contrary to that, the electron density wave rotates in molecule-flxed space.
In order to visualize the effect, we define the molecular orbitals ψθ andψε  in terms
of a linear combination of valence atomic orbitals ξi centered at the i-th nucleus
as

With the aid of the transformations (6) and (16) the adiabatic electronic wave
functions of the triatomic JT system can be described in terms of the atomic
orbitals as

The variation of the LCAO coefficients vs. φ for the ψ_ adiabatic wave function is
illustrated in Fig. 2. Upon inspection of this figure, one can easily notice the change
of the sign of the ψ- wave function after 2π rotation in the internal coordinates
space. In this simple model, which neglects the interactions of the unpaired electron
of the JT center with the other electrons of the molecular system, the charge
and spin densities are proportional to the square of the LCAO coefficients and
it is seen that both, the charge and the spin density waves propagate around
the JT center with the frequency of molecular pseudorotation. This is an explicit
mamfestation of the special coupling of the vibrational momentum L and the
energy spin i/2 due to which they are not conserved (each of them) separately.
The conserved value is the projection of the total momentum Ĵ = L + 1/2σ on the
z-axis. Thus the wave of electron density and the wave of nuclear distortions are
no longer independent, but are coherently related. The question whether rotation
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of the electron density around the JT center is caused by a gauge potential, or
whether the solenoidal magnetic fleld at the center results from the rotation of
electron density is somewhat a semantic one. This directly relates to the "reduced"
approach used in the mathematical description of the system in which variables of
one of the subsystems are integrated out.

Let us flnally notice that the solenoidal-like magnetic field at the JT center
is not a flctitious one, but it is a real magnetic field related to the rotation of
the electron density wave around the JT center. This can easily be shown by
calculating the expectation value of the magnetic dipole operator for the wave
function given by Eq. (13). Since the eigenfunctions of the operator Lz are also
eigenfunctions of the total vibrational Hamiltonian (Eq. (8)) the magnitude of the
magnetic dipole moment at the JT center is proportional to the rotational quantum
number j of its given eigenstate. This can never be zero because j ≠ 0. In other
words, the linear E®e JT center is a source of a real permanent magnetic field of
a solenoidal type. This conclusion remains true also for higher (quadratic) order
coupling as long as the quadratic coupling does not destroy the pseudorotational
motion of the system.

3. Discussion

An important and unique feature of the JT system resulting from the non-
-separability of the electronic and nuclear motion is that it presents itself as a
composite object (a quasiparticle) consisting of a boson (a deformable nuclear
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frame) and a fermion (rotating electronic density). Such quasiparticles can be
thought of as they were bosons carrying a magnetic solenoid containing a fraction
v (v = ±1/2 for the ground state) of a flux quantum. Thus there is a long-range
magnetic dipole—dipole interaction between two JT centers. Moreover, in the "re-
duced" description, where the intramolecular degrees of freedom are integrated
out, the magnetic flux of the JT quasiparticle can be viewed as resulting from
the underlying gauge stucture of the vector potential. The wave function of the
system of such quasiparticles thus acquires a phase e 1" when two particles are
adiabatically interchanged.

The gas of quasiparticles obeying v = 1/2 fractional statistics possesses
rather peculiar features since it is somewhat between bosons (v = 0) and fermions
(v = 1). Its properties have been extensively investigated over the recent years
with particular respect to the fractional quantum Hall effect [8, 17] and to the
novel class of the high-Τc superconduction [10, 18, 19]. Although particles obeying
1/2-fractional statistics are not bosons, and cannot show Bose condensation, pairs of
them, like pairs of electrons, are bosons and can Bose condense. Moreover, in 2+1
dimensions particles obeying v-fractional statistics interact with each other via
a particular long-range potential resulting from the "statistical" gauge field. The
presence of long-range potentials causes the excitations from the ground state of
such systems to have a finite energy gap [18, 19]. In other words, the ground state
of such system, the spin-liquid state, may serve as a basic model for the type-ΙΙ
superconductors.

The discussion presented above explicitly shows that one can rather con-
vincingly identify the linear E®e JT system in its ground state as a quasiparticle
obeying 1/2-fractional statistics. Moreover, in a molecular layer of JT quasiparticles
constructed in such a way that it preserves the symmetry for a coherent JT effect
(for instance, in the case of C3 local symmetry point group, each of the JT centers
must have three nearest-neighbors, and form a kind of the kagomé or the 3-12 lat-
tices [20, 21]) the unique dynamics of the 1/2-fractional statistics can be preserved.
The wave of molecular distortions of the lattice of the JT centers is of a special
kind. It consists of coherent pseudorotations of each of quasiparticles with momen-
tum and energy spin of opposite sign on the nearest-neighboring sites. Since each
of the JT centers contains an unpaired electron, at any instant of time they form a
layer of molecular dimers with common pair of electrons, a kind of Mott insulator.
An important difference between the layer of the JT quasiparticle dimers and a
Mott insulator is the dynamics inherent in the former. The pairs of electrons which
bond a particular molecular dimer do not reside on a "static" local molecular or-
bital. In fact, a particular JT quasisparticle forms and breaks the bonds with its
successive neighbors, due to the zero-energy pseudorotational motion of the elec-
tron density wave (cf. Fig. 2), analogous to the spin-liquid state [22]. In each of
the temporary formed dimers, bonding electrons lose their identity and thus the
electric current is generated in any external electric field lying in the plane of the
layer. At sufficiently low temperatures which do not destroy a long-range order
between quasiparticles, this should be the superconductive current of the type-ΙΙ
superconductor.

As was recently pointed by Kivelson and Rohksar [23], fractional statistics
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and thus the mechanism of superconductivity outlined above, makes no sense in
system with time-reversal invariance. It has subsequently been shown by Wu et al.
[24] that tactics in the theory is spontaneous breaking of time-reversal and parity
invariance. In other words, there are two socalled spin-liquid states related to one
another by complex conjugation, and the system must choose between them when
condenses into the superconducting state.

4. Conclusions

The mechanism of the coherent pseudorotations of molecular distortions
within a layer of JT centers coupled with the coherent (real-space) rotations of the
electron density as sketched above may provide an attractive description of the
type-II superconductivity. Indeed, there are strong indications that the JT cen-
ters play a cucial role in the new class of high-Τc (HTC) superconductors. Both
widely investigated classes of the HTC materials, the copper oxides [25, 26] and
fullerenes [27-29], contain JT centers (see also [30] and references therein). This
would confirm the expectation of Bednorz and Mϋller expressed in the words: "The
guiding idea in developing the concept was influenced by the Jahn—Teller polaron
model..." [31]. Let us stress, however, that there is a fundamental difference be-
tween the JT quasiparticle model proposed here and the JT based polaronic [32]
or bipolaronic [33] models which are often quoted in literature. Α polaron, by its
definition, denotes a wave of distortions propagating through the lattice and co-
herently interacting with the electronic density wave. In other words, it represents
a version of the BCS classical model. The "polarons" in the JT quasiparticle model
are localized on particular pseudorotating JT centers. The phases of the pseudoro
tations between different JT quasiparticles are correlated due to the long-range
gauge (or magnetic dipole-dipole) interactions forming a spin-liquid state. If the
pseudorotational (zero-energy) motion is hindered due to symmetry reasons or due
to strong second-order vibronic interactions, the system is expected to be a kind
of Mott insulator.

The problems connected to the construction of the JT quasiparticle layer
and its properties are discussed in more detail in the forthcoming paper [34].
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