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In this paper, we present a preliminary summary of our recent results
_ on the enhancement of the electron-positron annihilation rate in d-band
metals based on our recently published optimized quasi-free Bloch-modified
ladder [QF-BML{opt.)] theory. This approach enables us to investigate the
influence of the periodical lattice potential on the electron-positron annihi-
lation in an approximative but nevertheless physically reasonable way. We
used our theory for calculations of momentum-dependent enhancement fac-
tors belonging to electron states of different (s-, p-, d-) character in simple,
transition and noble metals (Na, Cu, Pd, V). It is interesting to compare
these new BML results with corresponding results obtained by the local
density approximation (LDA) according to the work of Daniuk et al. We ob-
serve relatively strong differences between the BML and LDA enhancement
factors for metals whose polarization process is dominated by s or p elec-
_ troms. In such cases, we presume that the LDA approach has the tendency
to overestimate the role of the more-localized d electrons in the polarization
of the inhomogeneous electron gas. For transition metals whose physics is
mainly determined by such d electrons, the discrepancies between BML and
LDA enhancement results are significantly smaller. ‘

PACS numlers: 78.70.Bj, 71.25.Pi

1. Introduction

In a series of papers [1-3], we investigated the behaviour of positrons propa-
gating within an inhomogeneous electron gas. Since Kahana’s famous paper on the
electron—positron enhancement in the homogeneous electron gas [4], many authors
successfully dealt with the behaviour of positrons in jellium. It is not necessary
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to describe this development here because some very competent review papers on
this subject have been recently published (see e.g. Ref. [5]). In fact, we can say
that the enhancement problem for the homogeneous electron gas is more or less
solved.

However, this is by no means the case for the problem of the enhancement of
positrons within the inhomogeneous electron gas as, for example, in a real metal.
For a theoretical description of the electron—positron interaction in solids, there
exist two different concepts.

(i) The so-called Bloch-modified ladder (BML) theory is the application of
the Kahana formalism to the inhomogeneous electron gas. During the last years,
some efforts have been made for a physically realistic description of the elec-
tron and positron scattering states which appear in the ladder formalism (the
Bethe-Goldstone equation) turning out that lattice effects with respect to both
the interacting electron and positron Green’s functions and the polarization of
the electron gas due to the positron play an important role and must not be ne-
glected [1-3, 6, 7]. Recently, we presented a new and improved version of our
so-called “quasi-free” BML (QF-BML) approach [8] by optimizing the two param-
eters ae and ap which appear in our QF-BML formulae: this new version, called
optimized quasi-free Bloch-modified ladder theory [QF-BML(opt.)] [3] is one of
the starting points of the investigation presented here.

(i1) Another very effective and successful theoretical approach for the de-
scription of electron—positron enhancement effects in solids is based on the use
of local state-dependent enhancement factors in the independent particle model
(IPM) rate formula: therefore, this approach which goes back to a paper of Bon-
derup et al. [9] and has been further developed by Daniuk et al. [10] is called the
local density approximation (LDA). A comprehensive summary about the success
and thic problems of this theory has been recently presented by Sob [11].

Tle aim of this work is a comparison of the momentum-dependent enhance-
ment results obtained both by BML and LDA where we are especially interested in
the question how d-bands in the neighbourhood of the Fermi energy may influence
the enhancement. Therefore, after a short review of the theoretical background
of this paper given in Secs. 2-4, we focus our attention to electron-positron in-
teractions in noble and transition metals like copper, palladium and vanadium.
Nevertheless, it is also very interesting to study the differences of LDA and BML
results in simple (and very “jellium-like”) metallic systems like sodium.

2. Basic theory

All theoretical investigations on the electron-positron behaviour in con-
densed matter are based on the formula for the momentum-dependent two-particle
annihilation rate [12]:

Rp+ @)=

%(—i)2 /n Pzd’y exp [-i(p+ @) - (¢ — )] Gep(at, @t yt*, yt*), (1)

where A/{2 means the Sommerfeld rate. h(p + G) is the photon-pair momentum
which is, for practical reasons, defined by the sum of a vector p inside the first
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Brillouin zone (BZ) and a reciprocal lattice vector G. For G # 0, the formula
deals with high-momentum (umklapp) components of the electron—positron mo-
mentum density, whereas G = 0 corresponds to the central momentum region. For
this contribution, all calculations were performed for G = 0. G, represents the
zero-temperature electron—positron Green’s function. Following Kahana [4], G,
can be expanded in a series of so-called ladder diagrams

Gep(z) Z"; Y, yl) = Ge(.’ﬂ, y)GP(z,’ yl) + ';-; / dfdﬂ Ge(Z', ﬁ)GP(zl’ n)"ep(fa 77)
XGep(€, M54, Y) (2)

(z = aty etc.) with G. and G}, as the single-particle Green’s functions of the
electron and positron, respectively, which are based on the eigenfunctions ¢ and
% of the single-particle Schrodinger equations

h?
[_ﬁA +vg (r) + v;c(r)] Pak(r) =€ 0. k(™ @3)

n

[-—%A + of (r) + vl 'r)] Y op(r) = €+k ¥ p(). @

In the above equations, v means the Coulomb potential energy of the particle due
to the (rigid) lattice of the atomic ions and the Hartree potential. vy, represents
the LDA of the exchange and the (static) correlation of the electron with the
other electrons. The term v}, in the positron equation represents the correlation
interaction of the positron with the electrons. This correlation term is neglected in
many theoretical investigations and also in the work presented here. But it should
be emphasized that this neglect might not be justified in each case. Namely, as
we learned from a recent paper of Daniuk, Sob and Rubaszek [13], this correlation
eflcct on the positron state may considerably influence the annihilation probability,
especially if the core annihilation is concerned. Nevertheless, the influence of the
direct electron—positron correlation is normally much more important than this
self-energy effect. ‘

Taking into account only the first term of the ladder expansion (2) (the term
of zeroth order with respect to a direct et—e~ interaction), we get

GO (z,2';y,v) = Ge(z,y)Gp(2', /).
Inserting this into the rate formula (1), one gets the well-known expression
RO(p+G) =

A5 0(er — np)| [ Er exp[-i(p+ €)1l pup(r s (DE (5)
2 " 0

with 14 = ¥, as the bottom state of the positron.

Now, for a progress of the theoretical description of R, one may try to evalu-
ate (at least approximately) the further terms of the integral equation (2) as we do
it in our BML work, or one may include this effect of the direct e~—e* correlations
by the insertion of an enhancement factor ¥np [rs(r)] which is a function of the
local electron density at a given point r: this procedure leads directly to the LDA
rate formula
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A
R'™A(p+G) = 5D O(er — enp)

x| [ exp [-ip-+ 6) - 1y 1p(r) np (N4 (P ®)

For the sake of brevity, we do not want to diseuss in detail the different forms of ¥
which have been proposed by many authors during the last years. For our compar-
ative LDA calculations, we always used the formulation of Daniuk et al. [10, 13]
where 7 is taken from the enhancement theory of the homogeneous electron gas

Tuk = Ehom [rs(r);Xﬂk]
with X p = ,/egk/ep where €k and cr mean the energy of the electronic state

(nk) and the Fermi energy, respectively. This energy-dependent enhancement for
individual states was proposed first by Sob [14, 15] and independently by Mij-
narends and Singru [16].

3. The Bloch-modified ladder theory

The mathematical implications and problems combined with the application
of Kahana’s theory to the inhomogeneous electron gas (Carbotte [12] and Carbotte
and Salvadori [17]) have been recently discussed by several authors [1-3, 6, 7]. We
shall give here only a very short review of this topic.

The BML rate formula reads

RBML(p 4 G) = 2%;@(51; — €np) {%:a,,p(K)bo(G - K)

+b—1—2— YD 0p—er) D (fnp —ep+ed - sj-'q)—l XEME(k)
k : j

i

x> > g, Gz'(q) > anp(K2)a, 1 (K> — Gy + L)

G, G, K, \
X !E bo(K3)bjq(K3 + Gz)} } S (7
K, (

and contains the Bloch-modified Bethe-Goldstone amplitude xBML

X?,ML(k) = Z aik(Kl)qu(G— Kl + L) + % ZZ O(Esk' _ng)

K, L
-1
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:K2
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In Egs. (7) and (8), the anp (enp) and by (¢}) mean the Fourier coefficients
(energies) of the occupied electron and positron Bloch states. All other Fourier
coefficients and eigenenergies belong to the non-occupied region. The reciprocal
Iattlce vectors L, I', I" etc. are defined by ¢ = p—k— L € 1st Brillouin zone etc.,
and v G’ Ga (q) represents the static approximation of the matrix of the effective
electron——posxtron potential.

An important role in our theoretical calculations is played by an approxi-
mation of the above formulae which was first presented by Sormann and Puff [8].
This approach simplifies the mathematical structure of the non-occupied electron
and positron states occurring in Egs. (7) and (8). It employs the Sommerfeld-like
approximations

sikz€10+aelk+ Kilzy aik(I() z(SK:Ki’

efgmed Topla+ K;I°,  big(K) m g g, ©)

where €19 and £ mean the electron and pesitron bottom energies, respectively.
Additionally, the electron-positron interaction matrix is simply approximated by

vZ‘;,G,(Q) ~ vP(lg+ Gi|; New) b, G,

The insertion of these approximations into Egs. (5) and (6) leads to the
quasi-free (QF) BML formula

RQF_BML(p+ G)=2= Z@(eF — Snp) {Z anp(Kl)bo(G K,)
K,

x [1- —Z O(ko — ke) vP(Ip — k+ K1) New) X () } ,(10)
k ,

with ko = [(er — €10) Jae]? and the correépbnding Bethe-Goldstone equation

G -1
XQFGBML(k) = (€np — €10 — ack® —aplp+ G- klz)

D;

x {1 557 Ok ~ ko) ueP(k - k’l;Neﬁ)xQF-”M%k')} (11)
kl

Equations (10) and (11) contain the parameters ae and ay,. Recently, we presented
an optimization scheme for these parameters by comparing the BML and QF-BML
rates [Egs. (7), (8) and (10), (11), respectively] belonging to the first two terms of
the ladder expansion (2). This procedure whose details are described in Ref. (3] is
called the a-optimized quasi-free Bloch-modified ladder approach [QF-BML(opt.)]
and enables us to describe the lattice effects of the electron—positron annihilation
process in the inhomogeneous electron gas approximately but much more realisti-
cally than in all other theoretical approaches.
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4. The effective electron—positron interaction

All our present work on positron enhancement in real metals is based on the
random phase approximation (RPA) for the effective e™—et interaction potential.
This procedure which ignores the existence of much better approximations of this
potential [18-20] requires some justification. The reason is that, at the present
stage of our work, we are especially interested in comparisons between the BML
and LDA enhancement factors, and we found out that the relations between the
results of these two approaches do not significantly depend on the detailed form
of the interaction potential used. On the other side, the use of RPA considerably
simplifies our calculations.

Therefore, in all our QF-BML(opt.) calculations presented here, we used the
simple approximation

vP(g; Nerr) ~ —vFFA(g; Nerr), (12)
where Neg is determined in the way described in Sec. 5.

However, and this is the main progress of our new calculations, in order to
obtain the optimized (state-dependent) values for a.(np) and ap(np), we describe
the electron-positron interaction potential as the complete potential matrizinstead
of a simple potential function [2]. This means that the optimized a. and ap re-
flect at least approximately all lattice effects which influence the electron-positron
enhancement: the lattice effects arising from the particle propagators within the
terms of the ladder expansion and also the lattice effects of the interaction poten-
tial.

5. Results and discussion

In this section, we present results of our recent investigations for the simple
metal sodium, the noble metal copper and two transition metals palladium and
vanadium. The choice of these metals is by no means arbitrary but is motivated
by the very different electron band structure of these metals in the neighbour-
hood of the Fermi surface. In the case of Na, the 3s valence electron is very
“free-electron”-like, and both the polarization and the enhancement behaviour
should show only very small lattice effects. This is also — at least to some extent
— the case of Cu whose valence band has a significant s/p character close to the
Fermi energy, despite the fact that the 3d bands lying somewhat below ¢p might
play a certain role in the polarization and enhancement process. Nevertheless, one
may expect that the investigated lattice effects for Cu are rather small, too. This
is certainly no more the case of Pd and V whose valence bands are strongly hy-
bridized with d-bands lying tightly below or even partly above the Fermi energy.
This fact should lead to very strong lattice effects both for the polarization and for
the enhancement. As a first step of our calculations, we had to determine reason-
able values of the effective number Neg of interacting electrons per unit cell which
is used in our QF-BML formulae. These values were obtained by a comparison of
LDA results and results of the homogeneous electron theory of the enhancement
at the center of the first BZ. In this way, we obtained the following values of Neg:
1.22 for Na, 3.43 for Cu, 4.31 for Pd, and 3.82 for V.
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‘The behaviour of the RPA interaction potentials for the four metals investi-
gated is demonstrated in Figs. 1a-d where we show calculated diagonal elements of
the potential matrices along the [110] direction in Na and V and along the [111] di-
rection in Cu and Pd. For comparison, the diagrams also contain the homogeneous
RPA functions for the Ng values given above. These interesting results confirm
at least partly our expectations: for Na (Fig. 1a), the deviations between v°P for
the inhomogeneous and homogeneous case are very small. It is interesting that the
inhomogeneous potential almost perfectly coincides with the homogeneous result
for Negw = 1 which means that the lattice effects of the polarization are more or
less negligible; and the value of Neg = 1.22 extracted from LDA enhancement
calculations is obviously too large! This is also the case for Cu (Fig. 1b) where the
lattice effects of the polarization are much greater than for Na and the effective
number of electrons engaged in the polarization process is significantly smaller
than it is expected by the LDA results. ‘

For two transition metals investigated, one observes the inverse effect: the
LDA-predicted values of Neg are too small and lead to significantly stronger po-
tentials than the potentials obtained by the theory of the inhomogeneous electron
gas: this eflect can be explained by the dominant role of the d electrons in these
metals for the polarization process and their high density-of-states (DOS) in the
region around the Fermi energy. If one compares the electron band structures of
Pd and V, it is also understandable that this “enhancement of N.g” by lattice
effects is significantly smaller for Pd (Fig. 1c) than for V (Fig. 1d).

Another important point are the non-diagonal elements of the polarization
matrices. We see from the corresponding formula [2] that the strength of these
elements gives some information about the local effects of the particle-particle
interaction in the electron gas. For the sake of brevity, we do not present our final
results on this topic which show that there are very small local effects for metals
whose polarization is dominated by s/p electrons (Na and Cu) and that there are
strong local effects for Pd and V where d electrons play the major role in the
polarization.

Some of our results on momentum-dependent enhancement factors for dif-
ferent valence bands in Na, Cu, Pd and V are shown in Figs. 2a~d. As a general
remark on our enhancement study we can say that we principally understand the
physics behind the results but we are far away to be able to present an explanation
of all the details. Much more efforts will be necessary to obtain a fully satisfying
understanding of the enhancement behaviour of positrons in real metals.

Each of Figs. 2a-d contains three curves: the LDA enhancement curve (full
line), an enhancement curve obtained by our QF-BML(opt.) theory including a
non-local electron-positron potential function according to the theory of the ho-
mogeneous electron gas (curve with triangles). These two curves show how the
enhancement is influenced by lattice effects within the electron and positron prop-
agators of the ladder expansion which are not explicitly taken into account by
the LDA approach. Some of these results have already been presented in Fig. 2
of Ref. [3]. The full lines with squares in Figs. 2a~d show the main results of
the present contribution, namely our enhancement curves including the lattice ef-
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Fig. 1. Effective interaction potentials v°P (in arbitrary units) in k space. The squares
indicate the diagonal elements v’E G( k) for k € 1st BZ and G are the reciprocal lattice
vectors which lie closest to the centre of the first BZ. The full lines represent homoge-
neous RPA functions for (a) sodium (Neg = 1.00 and 1.22), (b) copper (Neg = 3.43),
» (c) palladium (Neg = 4.31), and (d) vanadium (Neg = 3.82). The momenta are in units
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Fig. 2. State-dependent enhancement in simple, noble and transition metals as a func-
tion of the annihilation momentum p (given in units 27/a with a as the lattice con-
stant). Full curves: LDA; curves including triangles: QF-BML(opt.) including a non-local
electron—positron potential function; curves including squares: QF-BML(opt.) including
an electron—positron potential matrix with local effects. (a) Na, [100] direction, valence
band, (b) Cu, [100], 6th valence band, (c) Pd, [111], 1st valence band, (d) V, [100], 1st
valence band.
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fects both from the electron and positron propagators and the electron—positron
interaction potential. These results reflect more or less the results of Figs. la-d.

For Na (Fig. 2a), the enhancement curves belonging to the results of the
QF-BML(opt.) approach with and without the influence of the lattice on the po-
larization are very similar due to the fact that these lattice effects are rather small.
Nevertheless, both curves lie significantly above the LDA result, indicating rela-
tively large lattice effects within the e~ and et propagators. For Cu (Fig. 2b),
the polarization is mainly determined by s/p electrons of the 4s valence band.
The small DOS of these electrons close to ep leads to a significant increase in the
strength of the effective interaction potential and, consequently, to an increase in
the enhancement factors compared to the LDA results where the role of the copper
3d bands is obviously overestimated. This effect is especially large for enhancement
curves belonging to occupied electron bands close to €f.

As far as the transition metals Pd and V are concerned, the situation is quite
contrary: the polarization process is dominated by the d electrons of these metals
with their relatively high DOS close to ep: therefore, the inclusion of lattice effects
on the polarization into the enhancement theory causes a more or less strong
reduction of the enhancement factors. We observe this behaviour very distinctly
in the case of V (Fig. 2d) where the corresponding QF-BML(opt.) enhancement
curves lie even below the LDA results. For Pd (Fig. 2c), these lattice eflects with
respect to the polarization are very small, much smaller than we would expect
it from the behaviour of the interaction potential (compare Fig. 1c). In fact, for
this material, the differences between the enhancement results belonging to BML
and LDA are small for each occupied electron band and for each direction in the
momentum space. At present, we have no convincing explanation for this rather
surprising behaviour.

6. Conclusions

Our theoretical results on enhancement factors in simple, noble and transi-
tion metals and the comparison with LDA results clearly indicate that for a proper
description of the electron-positron annihilation process in real (non jellium-like)
metallic systems, an adequate theoretical consideration of the lattice effects of
both the electron and positron scattering states and the effective interaction po-
tential is necessary. OQur comparison with LDA enhancement results shows that
this approach has the tendency to overestimate the role of the d electrons for
the polarization of the inhomogeneous electron gas. Therefore, in all metals where
the polarization is dominated by s or p electron states (alkalis, copper), the LDA
enhancement seems to be too small, whereas for metals with a high density of
d states close to ep, the LDA approach is much more reliable. Consequently, in
transition metals with their strong dominance of d electrons close to the Fermi
surface, the agreement between LDA and our new BML approach is not bad (V)
or even surprisingly satisfying (Pd). However, in metals whose scattering physics
is dominated by s or p electrons (Na, Cu), the discrepancies between the LDA and
BML results are considerably large.
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