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In this paper, we present a numerical investigation about the question
how sensitively Fourier coefficients of the positron wave function ψ+ react
to different (and not too strong) changes of ψ+. In order to obtain gen-
eral information about this problem, we studied this sensitivity for several
bcc and fcc metals and for different models of the positron wave function.
Summarizing our results, we can say that this sensitivity is generally small
(or at least moderate) for Fourier coefficients belonging to reciprocal lattice
vectors G which lie nearest to the centre of the momentum space. For the
outer vectors G, the amount of this sensitivity is strongly dependent on the
crystal structure of the metal and on the special like of the change of the
positron wave function.
PACS numbers: 71.25.Pi, 71.60.+z ,z , 78.70.Bj

1. Introduction

We learned from our theoretical and numerical studies on the behaviour
of the electron-positron momentum density p(p) of non-interacting particles in
a periodic lattice potential [1-3] that, in each metal, there are some umklapp
components p(p = k+ G) which are only weakly sensitive on different approxima-
tions of the positron wave function ψ + . Explicitly, our theory shows that, for all
socalled relevant umklapp regions (i.e. umklapp components of remarkably high
values) centred around certain reciprocal lattice vectors G, the relative change of
the electron-positron momentum density Δp(λΒ)(k+ G) with respect to different
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models (A) and (B) of ψ+ (we call this the sensitivity of p) is always smaller than
the corresponding sensitivity of some particular Fourier coefficients of ψ+.

In this paper, we shall demonstrate that each metal has at least one (and
often more than one) reciprocal lattice vector G with a relatively small corre-
sponding value of Δp"(AΒ)(G). We show that this behaviour is quite general and
occurs for different crystal structures and different models of ψ+.

In Sec. 2 we give a short review of the basic formulae of our theory on this
topic, which has been previously published in Refs. [1, 2]. The different models of
ψ+ which we used for our numerical tests are described in detail in Sec. 3. The
results of this investigation for several bcc (Li, Na, K, Rb, Cs, V) and fcc metals
(Al, Cu, Pd) are presented in Sec. 4.

2. Review of basic formulae

Following Ref. [4] within the independent particle model (ΙPM), the electron-
-positron momentum density (for a given electron band j) reads as

In Eqs. (1) and (2), ukj
 and v are the Fourier coefficients of the electron in the

Bloch state kj and the thermalized positron wave function, respectively, and Gkj
is the reciprocal lattice vector which describes the leading coefficient of the Fourier
expansion of the electron wave function with the property
|ukj (Gkj )| > |ukj (H)|. According to Refs. [1] and [2], the sensitivity of pρ(k+ G)
with respect to different approximations (A) and (B) of the positron wave function
'0+ can be expressed by

The corresponding sensitivity of the Fourier coefficients of the positron wave func-
tion belonging to the models (A) and (B) is defined by

and the dependence between Δp(Α,Β) and Δp(Α,Β) is described by the positive ratio
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As a main result of our previous papers we got out that, for all relevant umk-
Iapp regions, y (K) < 1, or, if the umklapp densities have a high value, y(K) <ς 1,
i.e. Δp(k + G) is very small (close to zero). This relation which has been both
theoretically derived and checked by numerous numerical tests means that the
sensitivity of the Fourier coefficients belonging to different models (A), (B) of  ψ+
is always an upper limit for the "true" sensitivity Δpj of the electron-positron
momentum density.

3. Approximations of the positron wave function

In order to make this investigation practically useful, it is of great importance
to choose models for the positron wave function Ψ+(r) which are frequently used
in realistic calculations of electron-positron annihilation rates.

As we extensively discussed in a previous paper on the role of approximations
of ψ+ in rate calculations [5], especially the authors who work with augmented
plane wave (APW) or APW-related rate formulae frequently use approximations
of ψ+, where the spatial anisotropy of this function is partially or totally neglected.
Nevertheless, it should be emphasized here that there are also rate formulae which
are able to take into account the full anisotropy of  ψ+ without any approxima-
tions. We mention here the formula based on the Korringa-Kohn-Rostoker (KKR)
method and a multiple-scattering formalism [6].

One of the most popular approximations of  ψ+ has been proposed by
Loucks [7] and is of the muffin-tin type:

where ψsph (r) is the spherical average of an APW positron wave function inside
the muffin-tin sphere with radius rMT . Outside this sphere, ψ+ is approximated by
the constant c. Due to this special procedure, c does generally not coincide with
ψsph(r = rMT) leading to a step of ψ+' ) (r) at the surface of the muffin-tin sphere.
As all positron wave functions used in our work, ψ+(L) is normalized to the unit
cell of the crystal lattice Ω0. Obviously, ψ+(L) does not at all take into account any
spatial anisotropy of the "true" positron wave function.

The Fourier coefficients of ψ(r) can be easily calculated resulting

with

where j0 (x) means the spherical Bessel function of zeroth order. Due to the dis-
continuity of ψ(r) for |r| = rMT, w(rMT) is not necessarily zero.

If one decides to proceed from ψ+(L)) to a more realistic approximation of the
positron wave function, the following typical "perturbations" of the approximation
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according to Loucks will appear: There will be changes of ψ+ inside the muffin-tin
sphere, especially close to the muffin-tin radius rMT. Such changes can be modeled
by the definition of a "perturbed Loucks function ,, which is based on

with r0 < rMT and α as the lattice constant of the metal. The strength of this
perturbation can be controlled by the two parameters γ and r 0 . The perturbed
Fourier coefficients υ(LP)(G) and the corresponding function w(p)(r) are defined
by Eqs. (9) and (10) with ψ(r) (Eq. (11)) instead of ψsph (r). Additionally, a

new (perturbed) normalization constant c() will also appear.
According to Eq. (9), one can generally expect that the sensitivity of υ+(L)(G)

will increase with an increasing oscillatory behaviour of the Bessel function j0 (Gr),
which is strongly connected with the number and the position of the nodes of this
function inside the muffin-tin sphere. Taking this into account, one expects very
small changes in υ+(L)(G) for G = (000) (in this case, j0 (Gr) = 1), and moderate
changes for the first nonzero reciprocal lattice vector (G = (110) or (111) for bcc
and fcc structures, respectively). In both cases j0(Gr) has only one node inside the
muffin-tin sphere close to rMT. For G = (200), the Bessel function has also only one
node inside the muffin-tin sphere, but, for the bcc case, this node lies significantly
deeper inside the sphere than for the fcc case (rnode/rMT = 1/'/ and 1/' for
bcc and fcc, respectively). Consequently, the changes in υ+(L)(G)forG =(200)
are expected to be greater for the bcc than for the fcc stucture. This expectation
is strongly confirmed by our numerical tests which are discussed in the following
section.

Anisotropy effects in the interstitial region (i.e. between the muffin-tin sphere
and the boundaries of the Wigner-Seitz cell) are included in the approximation of
ψ+ proposed by Hubbard and Mijnarends [8]:

what means that, outside the muffin-tin sphere, the wave function is described by
a plane-wave expansion. The corresponding Fourier coefficients are given by the
expression

with X(x) = j1(x)/x and j1 (x) as the spherical Bessel function of the flrst order.
So, we can resume as follows: The sensitivity values ΔL , - ) and Δ^(L,M)

(defined in Eq. (6)) give information how sensitive the Fourier coefficients of the
positron wave function react to changes of ψ+ inside and outside the muffin-tin
region, respectively.
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4. Numerical results and discussion

In this section, we show some numerical results on the sensitivíty of the
Fourier coefficients of ψ+ according to Eq. (6) with respect to the different models
ψ) ψ+(Lp) and ψ+(m) described in the previous section. In fact, we discuss the
quantities Δ(140 (G) and Δ(L;Μ)(G) as functions of the reciprocal lattice vector
G for several bcc and fcc metals. In our numerical work, we used three different
sets of parameters r0 and γ for ,ß+L1 (compare Eq. (11)), namely, for the bcc
metals,

The strength of the perturbation increases from (Lpl) to (Lp3) as it is illustrated
by Fig. 1, where we show the unperturbed and perturbed functions w(r) (see
Eq. (10)) for bcc lithium.
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Tables I and II summarize our numerical results. We present values of
Δp(L;LΡ) (G) for the cases (Lpl), (Lp2), and (Lp3) and values of Δp(L^Μ)(G),
both for the bcc metals Li, Na, K, Rb, Cs, and V and for the fcc metals Al, Cu,
and Pd as well as for different reciprocal lattice vectors G.

In Table I, we show results for the vection G which lie nearest to the centre of
the momentumspace, namely G = (110) and G = (111) for the bcc and fcc metals,
respectively (all G vection are given in the units 2π/α). It is evident from this table
that, for all bcc metals investigated, the sensitivíty of the Fourier coefficients of
the positron wave function with respect to all models of ψ+ which we discussed in
Sec. 3 (Loucks, perturbed Loucks (Lpl), (Lp2), (Lp3) and Hubbard—Mijnarends)
is very moderate. For Δ,p(L,Lp1)), Δp(L,Lp2), and ΔΜ), we observe very small
sensitivity values between 0.6% up to about 2.8%. Only for the strongest pertur-
bation of ψ+ according to Loucks' formula, namely for Δp(L,Lp3), somewhat higher
sensitivity values up to 7.2% appear. For the fcc metals investigated, the results
for all three types of Δp(L,Lp) for G = (111) are quite similar to those for the bcc
metals (values between 1.1% to 4.5%). It is interesting that the sensitivity of
ψ+ with respect to changes outside the muffin-tin sphere, represented by Δ^(L ,Μ),
is significantly stronger for fcc than for bcc metals: one observes sensitivity values
of about 10-11% for our examples Al, Cu and Pd.

Table II contains our sensitivity results for the second-nearest reciprocal
lattice vector G = (200). As an overall result for the bcc metals, we can say
that all sensitivity values belonging to G = (200) are signiflcantly higher than
the corresponding Δ ,3 values for G (110) presented in Table I. With regard to
the Δp(L,Lp) values for G = (200) for the fcc metals, the sensitivity is remarkably



Umklapp Components of the Positron Momentum Density ... 	 191

small, approximately equal or even smaller than the corresponding values for the
nearest reciprocal lattice vector of Table I. However, for the sensitivity values
Δp(L , Μ) , the situation is quite clear: for G = (200), for all metals investigated,
we observe a very high sensitivity of the Fourier coefficients of ψ+ with respect to
changes of ψ+ in the interstitial region.

5. summary and conclusions
This contribution is dedicated to a numerical study of the question, how

sensitively the Fourier coefficients of a muffin-tin positron wave function  ψ+ react
to changes of ψ+ both inside and outside the muffin-tin sphere. For this purpose,
we use several models of ψ+ (Loucks' formula, some perturbed versions of Loucks'
formula, the formula proposed by Hubbard and Mijnarends), and we investigate
the sensitivity of the Fourier coefficients as defined in Eq. (6) with respect to these
approximations of ψ+ for several examples of bcc and fcc metals and for different
reciprocal lattice vection G.

As a general result of our investigation we can say: For all Fourier coeffi-
cients belonging to the reciprocal lattice vector which lies nearest to the centre
of the momentum space (i.e. G = (110) and (111) for the bcc and the fcc case,
respectively), this sensitivity is small or at least of moderate extent (Table I). For
the next lattice vector (G = (200) both for bcc and fcc), the situation is more
complicated because the sensitivity behaviour is much more dependent on the
structure of the metal and on the special type of change of ψ+ (Table II). For all
bcc metals investigated, we generally observe relatively strong sensitivities. For the
fcc metals, however, the sensitivity is weak for changes of  ψ+ inside the muffin-tin
sphere (modeled by the types L and Lp) and rather strong for changes outside the
muffin-tin sphere (modeled by the types L and M).

Our numerical tests presented here agree with our statement in Refs. [1, 2]
that, for all metals and for different (not too strong) changes of the positron
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wave function, there exists at least one Fourier coefficient which is weakly or only
moderately sensitive to such changes.
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