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The influence of the positron on the momentum distribution of annihila-
tion quanta is investigated. Basing on general considerations, we show that a
noninteracting positron, which generally reduces electronic densities, may en-
large some particular electronic umklapp components. Numerical tests were
performed for alkalis, Al, Cu and Pd by applying augmented plane wave band
structure calculations. In the paper we discuss also the influence of this ef-
fect on the electron-positron densities after including the electron-positron
correlation effects.
PACS numbers: 71.25.Pi, 71.60.+z,z, 78.70.Bj

1. Introduction

Due to the electron-positron interaction, the electron density at the positron
site is enhanced. In momentum space it leads to a strongly momentum dependent
enhancement factor of the electron momentum density. This problem was solved
for the electron gas [1], but it is still ambiguous how it should be solved in the
case of real metals.

It is known that the behaviour of umklapp densities (called also higher mo-
mentum components (HMC)) strongly depends on the theoretical approach used
for description of the electron—positron correlation effects, e.g. the local density
approach (LDA) [2] leads to either a de-enhancement or an over-enhancement [3]
while the Bloch-modifled ladder (BML) expansion approach always leads to a
de-enhancement of the HMC denSities [4]. Due to this reason the eXperimental
investigation of the HMC enhancement could be utilized for a verification of these
approaches. Of course, it requires a precise calculation of pIPM(p), where IPM
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denotes the independent particle model. However, according to our theory [5], in
some regions of p the two-particle density pIPM(p) can be evaluated with a high
accuracy, largely independent from uncertainties arising from different approxima-
tions of the wave function Ψ+ (r). It allows to study the behaviour of the HMC
without being afraid that possible disagreement between theory and experiment
is connected with improper IPM calculations due to uncertainties arising from ap-
proximation of the positron wave function. It should be noticed that these "stable"
densities correspond to densities of the highest value which can be really studied
in the experiment, i.e. this important property of Μ() can be utilized for a
verification of various approaches used for describing the electron-positron (e-p)
interaction in real metals.

2. Theory

According to our results [5], in a periodic lattice potential the e-p momentum
density (within IPM and in the j-th band) can be written as

and uk. and v are the coefficients of the Fourier expansion of the electron and
thermaiized positron wave function, respectively. Gkj is the reciprocal lattice vec-
tor G describing the leading coefficient with the property ukj(Gk.)| > |ukj (Η)|•
In order to make our formulae more clear, henceforth the index k? in α, u and x
will be omitted.

In the case of G = Gkj , corresponding to the leading term of the density

with umax deflned as max
[ 	

|u(H)| and ‚x| lower than unity [5c, d].
H#G, Ckj

For a few flrst umklapp 
`

densities (densities of the highest value) it holds
|x umax/u(G)) < 1.

As we showed in the papers [5], such description of a two-particle density
(Eq. (1)) and knowledge of general properties of α parameters allows to determine
some general rules connected with features of p(p).
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It is well known that the noninteracting positron reduces the electronic den-
sities which is connected with Bunikowski-Schwarz inequality. i.e.

where || ψ || denotes the norm of the function ψ. Therefore, if both electron and
positron wave functions are normalized to the unity, the e—p momentum density
satisfies the condition

As a result, p IPM(p) after Lock-Crisp-West (LCW) folding (Ref. [6]) is not the
same step function as in the case of the electron density, being additionally momen-
tum-dependent (this effect was studied, on the example of Nb, in the paper [7]).

In this paper we study the following effects:
1) If our theory, describing some general features of p(p) [5], could explain

also the results found by Kaiser et al. [7] as well as in the papers [8, 9].
2) If all components of pjIPM(k+ G) are reduced, i.e. if

is less than unity or it can be also greater than unity leading to an intensification
of the HMC. Here the index e describes the electronic density and p^ (k + G) =
| u (G)| 2 .

3) What kind of effects for p(p) (both in p and k space) are expected after
including to the IPM correlations effects.

The case G = Gkj., describing the density inside the Fermi surface (FS)
in the extended zone scheme, and G ψ Gkj, providing HMC, are considered
separately. In the next paragraphs the index j in ε, p, ξ and n will be omitted,
keeping in mind that all these considerations are done for a chosen band j.

Taking into account that |v(0)| < 1 and |α(Gkj )| is a small number, εIPM(k+Gkj)
can be greater than unity for such states kj for which e( Gkj ) has a positive value
as well as fulfils the inequality

According to our theory [5c, d], α(Gkj.) is a negative number only for pure d states.
Therefore, on a base of general considerations, in this case we can expect that only
for pure d states the main component of the density will be reduced while for other
states it could be intensifled if the above condition for α is satisfled. However,
because |v(0)| is close to unity, usually positive α should satisfy this condition,
particularly, for such states kj for which the lattice effects are high (i.e. Fourier
coefficients u(H), belonging to umklapp components, are increasing). Particularly,

εlPM(
k 4 Gkj ) will be greater than 1 and relatively high for delocalized states
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in transition metals while in simple metals this effect will be increasing with k
approaching the Fermi momentum. It is conflrmed by our numerical calculations
(see Fig. 1). It is also obvious that the ratio

is close to unity in the case of simple metals, i.e. noninteracting positron does not
change remarkably (in comparison with p (Gkj )) the momentum dependence of

pjlPM(Gkj)(it was also discussed in Ref. [5a]).
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where

Because ξ cannot have a high negative value, i.e. ξ cannot be lower than -2,
ε IPΜ (k + G) can be greater than unity only for such states kj for which ξ is a
positive number and

Usually, for a few first HMC the second term in ξ is negative (compare
Eqs. (2) and (8)). Therefore in order to have > 0, the first term in ξ must
be both positive and greater that the second one. This can occur for some first
umklapp components of s-like bands while for d states, where mostly is a negative
number, εIPΜ is lower than unity.

It is known that from angular correlation of annihilation radiation (ACAR)
experiments we do not get absolute values of p(p). Therefore, it is useful to define
relative quantities, e.g.

Of course, one could try to estimate from the experimental data the absolute
value of the density by normalizing ACAR spectra to the total annihilation rates
measured in lifetime experiments. Otherwise, we should remember that n(k + G)
could be either greater or lower than unity even if ε(k + G) > 1.

2.3. Generalization of the theory

In the case of a real electron—positron (e-p) density, i.e. after including the
correlation effects, the e-p wave function can be written in the form

where, generally, the function [5a,b] is defined as

This function is not normalized to unity and its norm strongly depends on the
state kj (in the case of the electron gas theory it is described by the enhancement
factor (EF), εjell (p)) . The shape of the correlation factor fkj(r) (equal to 1in the
IPM) could be very complicated, being dependent on other quantities (e.g. pe(p),

G, etc.).
In the case of LDA [3] , fkjLDΑ(r) has a similar shape as |ψ+ (r)|, i.e. it is a

positive and monotonously increasing function of r. This is connected with the
fact that p(r) is decreasing function of r and, as it is well known from lifetime
measurements, the probability of the e—p annihilation is decreasing with increas-
ing p(r). Therefore, as previously, one can perform similar considerations for the
functions 

+ a
nd Ψkj,. replacing the coefficients v by v and studying ε2 = p/pe or

for the function fkj (r) and Ψ+Ψ,bkj, studying εcorr = p/pIPΜ Of course, εcorr will
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be always greater than unity because the e–p interaction increases the probability
of the e–p annihilation. This enhancement factor can be written as

(compare with Eq. (7)), where v" denotes the Fourier coeflicients of the correlation
factor fkj (r) and the coefficients u in ‚  are the Fourier coefficients of the e–p wave
function ψ+ψkj for the IPM. This equation clearly shows that the momentum
dependence of this enhancement factor depends both on the state dependence of
the correlation factor as well as on the lattice effects. Even if the state dependence
of f(r) is neglected, εcorr is momentum-dependent through the function ξ (such
effect has been pointed out in the paper [5a]). Therefore, ncorrLDA,similarly asnIPΜ
can be either greater or lower than unity, leading to either over-enhancement or
de-enhancement effects of the HMC. Such numerical results were obtained for
Na [3a] and Mg [3b] — the behaviour of the corresponding n functions in Na is
displayed in Fig. 2. Moreover, for a given band the function ncorrLDA,in contrast to

εcorrLDA, depends weakly on the state dependence of the correlation factorfkj(r).It
is connected with the fact that in the LDA the state dependence of the correlation
factor is described by a dependence on the energy, which is the same for vection k
and k+ G.

In the case of transition metals one could expect that the local density de-
pendence of the correlation factor f(r) will cause (in contrast to BML approach)
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some additional effects also for the main components of densities if they are com-
ing from differently localized bands. This effect can be read from Fig. 1 which
illustrates that introducing an additional, position dependent function into cal-
culations of p(p) (ψ+ (r) in the IPM or fkj(r) for a correlated system) generates
an additional change in contributions of differently localized bands. Correlations
effects, similarly as noninteracting positron, decrease a probability of the e-p an-
nihilation together with localization of the band. Due to this reason, LDA and
BML will lead to different result also for densities inside the central Fermi surface.
Therefore, in this case it is reasonable to study ε2γ (or εcorr") for total densities
both inside the central Fermi surface and outside of it.

3. Summary

In this paper we showed that noninteracting positron which reduces the e-p
densities folded into the 1st Brillouin zone (k space) can enlarge some particular
components of this density (both main components and HMC) in the extended p
space. Values of ε I (k + Gk^ ), which describe changes of the main components
of pe, depend on the character of the j-th band being lower than unity only for
localized states. The e-p local density correlation effects will lead to a similar re-
sult, having their reflection in the reduced k space. As a result they will introduce
an additional distortion of the LCW folded densities [6, 7] from the step function.
Particularly, the density originating from localized bands will be more reduced.
However, the state dependence of the correlation factor will increase the contribu-
tion of these states kj which are crossing the Fermi surface. This effect, in contrast
to the previous one, increases a jump of p(k) around the Fermi momentum which
is helpful in drawing the Fermi surface map.

As concerns experimental studies of the correlation effects, up to now there is
no answer what kind of physical effects is more important for a proper description
of the e—p interaction in real metals. The interpretation of the experimental data in
alkalis [4e] testified de-enhancement effect, in accordance with BML predictions.
On the other hand, the interpretation of the reconstructed densities in Mg [3b]
pointed out the over-enhancement of HMC (HMC of the third band along [110]
direction), even stronger than it follows from the theoretical LDA calculations. Of
course, all these investigations were connected with studies of very subtle effects
because contributions of HMC in simple metals are very small. Due to this fact we
rather recommend investigations of transition metals, studying the shape of the
densities in the whole momentum space p. Moreover, we do not recommend to fit
the EF to experimental densities (e.g. p eΧΡ (p) = Σj εj(p)pIPΜ(p), where εj(ρ)
Σm cjmμm and μ could be chosen as e.g. k, p, Ej (k)). Such a treatment needs
a very precise fitting of all parameters, also c should change remarkably
depending on the band and its proper estimation would have strong influence on
the other parameters. Moreover, in the interpretation of these EF's one should
remember that their state dependence cjmμm/cj0 does not follow only from a state
dependence of the correlation factor (vkj (0) but also on the lattice effects described
by the function .
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