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QUADRUPOLE INTERACTIONS
AND ANISOTROPIC MAGNETIC QUENCHING
OF POSITRONIUM IN ORIENTED CRYSTALS

I.V. BONDAREV AND S.A. KUTEN
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Bobruiskaya St. 11, 220050 Minsk, Republic of Belarus, CIS

The quadrupole interaction of positronium in noncubic defectless crys-
tals has been investigated theoretically. It is shown to lead to the weak
anisotropy of positronium magnetic quenching. The temperature dependence
of the quadrupole coupling constant and the estimations of the magnitude of
the anisotropy are obtained for delocalized positronium in crystalline quartz.
The significant magnitude of the anisotropy is predicted for "anomalous"
positronium in oriented crystalline polymeric structures.
PACS numbers: 31.30.Gs, 36.10.Dr, 71.60.+z, 78.70.Βj

1. Introduction
It is well known [1] that, due to the noncentral part of the hyperflne in-

teraction between the electron and the nucleus, all hydrogen-like atoms possess
quadrupole moments Q in their ground states. For example, Q is equal to 0.7 barn
for hydrogen (H), 0.2 barn for deuterium (D), and 2.4 barn for muonium (Mu).
Investigation of the quadrupole interactions of H-like atoms in a medium permits
not only to study the intracrystalline fields but also the diffusion mechanism of
light interstitials in a crystal and the isotope effects [2]. Positronium (Ps) is the
lightest H-like atom which at present has been registered experimentally in semi-
conductors, ionic and molecular crystals, liquids, gases [3-5]. In that connection
it is interesting to study the question about the existence of its quadupole mo-
ment in a medium. The point is that, due to the equality of the electron and the
positron masses and also due to the execution of the CP- and T-invariance laws in
the system "particle–antiparticle", free Ps in vacuum is a completely electroneu-
tral system and cannot have any multipole moments [6]. In crystals, however, we
deal with a quasi-Ps exciton-like state [3]. Ιn such a state the effective masses of
the electron and the positron are, generally speaking, not the same. As a conse-
quence, positronium in a crystal may possess a new fundamental characteristic —
an effective quadupole moment [7].

The existence of the effective quadrupole moment in the ground state of Ps,
as well as in the case of Mu and H [2] would lead to the anisotropic hyperfine
interaction between the electron and the positron of the type [8]:

(83)
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with (atomic units)

where Aik is the matrix of the hyperfine interaction, Se and Sp are the spin op-
eration of the electron and the positron, respectively, ω is the hyperflne split-
ting of the ground level of Ps in the crystal (in vacuum it is equal to ω 0 =
8.2 x 10 -4 eV [6]), Qps is the effective quadrupole moment of Ps and φik  is the
electric field gradient (EFG) tensor in Ps centre-of-mass.

The purpose of this paper is to analyze theoretically the consequences of
Ps effective quadupole interaction and to obtain the approximate estimations of
the magnitude of the effects observed. We also generalize our conclusions to the
"anomalous" Ps which was recently detected in crystalline polymers [9].

2. Possible mechanism of the effective quadrupole moment formation
The Hamiltonian of the positron—electron bound pair (ground state) in a

crystal, with allowance made for the hyperfine interaction between the electron
and the positron, can be written in the form (atomic units):

The first two terms in (2) describe free Ps atom in its ground state. The third one
is the hyperflne interaction between the electron and the positron [6]:

(here, as usual, re, μe , Se and rp , μp, S, are the coordinates, the magnetic
moments and the spin operation of the electron and the positron, respectively,
n = (rp - re )/|rp - re |). The last two terms describe the interaction of Ps with pe-
riodical fleld of a crystal. We take into account the difference between the electron-
and the positron-crystal field interaction. This difference comes from the indistin-
guishability of Ps electron and the electrons of a crystal and provides V(e) ^ V(p).

Using the multipole expansion of the periodical crystalline potential and
taking into account the spherically symmetric (l = 0) part of the expansion by
means of the effective mass technique, we obtain from (2) the Hamiltonian for
large radius Ps exciton [10] in anissotropic (l ^ 0) periodical potential. In the
centre-of-mass system of an exciton it is written as*

*By introducing the coordinate-dependent effective masses and dielectric permeability, the
inodel can be easily generalized to the case of a small radius Ps exciton [11].
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where R = (rem e +rpmp ) / (me+ mp) , Re = (m/me)r, Rp = (m/mp)r, r = rp -re ,m = me mp /(me +mp ), M = me +mp , me and m are the scalar excitonic effective
masses of the electron and the positron, respectively. They are obviously not equal
to each other due to the fact that V(e) # ν( ). In Eqs. (4)-(5) ε is the optical
dielectric permeability, Vq/ , e) — the Fourier transform of the periodical crystalline
potential (y is the reciprocal vector), jl — the spherical Bessel function, Vl m
the spherical harmonics.

If we now assume the positronium-crystal field interaction to be small, then,
defining the wave function of our system as Ψ(R, r) = ψ(r, R)φ(R), we can sepa-
rate the relative motion and that of the centre-of-mass in (4) [3]. We obtain then

where the energy levels E(R) depend parametrically on the centre-of-mass coor-
dinate of Ps exciton and satisfy the equation

Under the assumption above, Eq. (6) may be solved by means of the perturbation
theory. In doing so, it is convenient to relate the hyperfine interaction to the
unperturbed part of the Hamiltonian. Then, due to the noncentral part of H hf(r)
(Eq. (3)), the exact wave function of Ps exciton in the triplet ground state takes
the form [1]:

where mF is the projection of the total angular moment F = 1 of positronium,
Rs(r, R), RD (r, R), V0 (n), Υ2 (n), X1 are the radial parts, the spherical harmon-
ics of rank Ο and 2 and the spin part (total spin S = 1) of the wave function,
respectively. The radial functions RS(r, 11) and RD(r, 11) describe S- and D-wave
contributions to the unperturbed ground state (at fixed R) and characterize the
quasi-Ps excitonic state in a medium. They are not identical to those for free Ps
atom. This disagreement comes from the electron and the positron effective exci-
tonic masses, from Coulomb potential modified by factor ε, on the one hand, and
from the contact part of the hyperflne interaction (3), on the other.

The first order correction to the energy Ε(R) is determined by the diagonal
matrix element of the perturbation operator (5). If the hyperfine interaction is
taken into account to the first order in small parameter μeμp, there is evidently
only one, quadupole, (l = 2)-term left in the multipole expansion (5) upon the
averaging of it over the unperturbed wave function (8). This term can be rewritten
in the form

where Qik = Fi Fk + Fk Fi - (2/3)F(F + 1)δik is the symmetric Cartesian tensor
of rank 2 with zeroth trace, F = Se + Sp — the total angular moment operator,
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Qρs (R) — the effective quadupole moment in the triplet ground state of Ps
exciton at flxed position of its centre-of-mass. The atomic quadrupole moment
is defined by averaging the quadrupole moment operator in the centre-of-mass
system of an atom over th corresponding atomic state with the maximum total
moment projection [12]. In our case we have

The symmetric Cartesian tensor φik(R) in (9) is given by

This is the EFG tensor in the centre-of-mass of Ps exciton.
Finally, we have, of course, to average the interaction (9) over the centre-

-of-mass motion described by the function φ(R) which is the solution of Eq. (7).
We obtain then the effective quadrupole interaction of Ps in noncubic crystals in
the form

3. The anisotropy of positronium magnetic quenching

Let us now analyze the consequences of the effective quadrupole interaction
of Ps in a crystal. As well as in the case of Mu atom [2], this can be easily done
by means of the spin-Hamiltonian technique. The corresponding spin Hamiltonian
for Ps is anisotropic and given by Eq. (1). It is easy to see that, due to the
effective quadrupole interaction, the triplet ground level of such an "anisotropic"
positronium is splitted even in the absence of external fields.

In the presence of an external magnetic field the Ps spin Hamiltonian takes
the form

where Γ specifles the decay part of the Hamiltonian. Considering the quadrupole
term as a perturbation, one can easily obtain the eigenstates and the decay widths
of (13):
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and the triplet levels of Ps in a medium, φ(ϋ, φ) = 3 cost /9 - 1 + n sin e 9 cos 2φ,
υ and φ are the polar and the lateral angles characterizing the tilt of B with respect
to the principal axis Z of the EFG tensor, d = QPsφzz, n = - ^4yy)/^zz|
is the effective quadrupole coupling constant of positronium and the asymmetry
parameter of the EFG tensor [13], respectively.

As is seen from (14), in the presence of am external magnetic field the effec-
tive quadrupole interaction leads to anisotropic splitting of the hyperfine energy
levels of Ps and also to anisotropy of its magnetic quenching (see γ0,1 in (14)).
Recall that the application of an external magnetic field on a correlated e+—e -
pair introduces a partial singlet character in that triplet state of the pair which
has no spin component along the direction of the field, and conversely a partial
triplet character in its singlet state. This effect was called the magnetic quench-
ing of Ps [3]. In our case the magnetic quenching is anisotropic one with the
anisotropy depending on the angle between the Β direction and the principle axis
Z of the EFG tensor (function φ(υ, φ) inside of γ0 , 1 in (14)). In particular, at
φ(ϋ, φ) = 0, i.e. if sine υ = 2/(3 - n cos 2φ) holds (Dean cone), the effective
quadrupole interaction does not contribute to the process of magnetic quench-
ing and the magnetic quenching of Ps must here be isotropic. At n = 0 (EFG
tensor is axially symmetric) the semivertex angle of the cone is equal to 54°44'. If
φ(,9, φ) Ο 0 the character of the magnetic quenching of Ps changes due to the ef-
fective quadrupole interaction. The processes of quenching differ maximally when
magnetic field is parallel and perpendicular to Z, the principle axis of the EFG
tensor.

It is interesting to estimate the magnitude of the anisotropy of Ps magnetic
quenching in a real crystal. The α-quartz single crystal seems to be best suited to
this purpose. Firstly, the magnitude of crystal field in quartz is small enough [3].
Therefore, we can expect our estimations to be realistic ones. Secondly, this crystal
has been investigated well by means of muon spin rotation technique [2]. Therefore,
to get the estimations needed we can use Mu data which have been measured
experimentally. For example, at T < 70 K Mu atom was identifled to be localized
in the α-quartz lattice with the EFG tensor principal axes oriented in the following
way: the x-axis is perpendicular to the twofold crystal axis & and makes an angle
α 0 = (27 ± 2)° with the ĉ-axis, the y-axis is collinear with the &-axis and the
ź and ĉ-axis make an angle 900 - α0. The EFG tensor is not axially symmetric
with d 9.3 MHz, n 0.35. At T > 200 K Mu moves fast along the ĉ-axis.
As this takes place, the EFG tensor principal axes "rotate" about the ĉ-axis in
such a way that the angle α0 remains fixed. Therefore, the effective, averaged,
spin Hamiltonian for Mu becomes axially symmetric (the axis of symmetry is the
ĉ-axis) with d —0.5 MHz, n = 0.

Ps in  α-quartz is observed to be delocalized in a wide temperature range
from 88 to 684 K [14, 15]. This is similar, to some extent, to the fast Mu diffusion
at elevated temperatures. Therefore, we can expect the spin Hamiltonian for Ps to
be axially symmetric as well. The anisotropic splitting of the Ps hyperfine energy
levels and the anisotropy of Ps magnetic quenching are given then by Eq. (14) with
n = 0. The temperature dependence of the effective quadrupole coupling constant
d can be easily estimated in view of the fact that the centre-of-mass wave function
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φ(R) in Eq. (7) is now of the Bloch wave type

where u k(R) is the periodical function of the Ps centre-of-mass coordinate, k —
the translational wave vector of P in the crystal. In terms of the wave function
(15) Eq. (12) averaged over the Boltzmann distribution gives us

Here (11) denotes φ (R) averaged over the "rotation" of the EFG tensor
principal axes, summation is made over the flrst Brillouin zone. For small k one
can approximately put uk(R) 'u 0 (R) + (∂u k (R)/∂k)| k=0 . k. Then Eq. (16)
becomes

where A and Β are the functions of the α-quartz lattice constants, which may be
calculated in an explicit form for a given geometry of an experiment.

Unfortunately, the phenomenological character of the model discussed does
not allow one to estimate numerically the magnitude of the anisotropy of Ps mag-
netic quenching with some degree of certainty. But we will try to do this so as at
least to visualize an order of magnitude of the effect. The rough estimations for
the magnitude of the anisotropy of Ps magnetic quenching can be obtained for
quartz in the following way. In a weak external magnetic field (x 2 , y2 (9, gyp) « 1 in
Eq. (14)) the magnetic quenching may be characterized by the magnetic quenching
parameter [16]. In our case it can be written in the form

Here y2(19, gyp) is given by Eq. (14), ‚Vs = ° t° +'p and γt = 	° + 'p are the
decay widths of the singlet and the triplet Ps in a medium, respectively [3],

= 8 x 10 9 s -1 and γ° = 7.14 x 10 6 s-1 are those for Ps atom in vacuum [6],
α is the factor taking into account the distortion of the Ps wave function due
to the presence of the medium, 'p — the Ps pick-off annihilation rate. The
relative decrease in the probability of 3γ-annihilation (W), the enhancement of
the narrow component of ACAR (angular correlation of annihilation radiation)
curve (E) and the suppression of the long-lived component in the time spectrum
(R), measured in the experiments on the magnetic quenching, are defined by the
parameter Q(υ, gyp) as: W (B) = 2/3 + 1/3(1 + Q(υ, gyp)), E(B) = Q(ΰ, φ)/(1 +
Q(,9, φ)), R(Β) = (1/3){2 + exp[—Q(υ, φ)]) [16]. For Ps in α-quartz we have
α ti 1 [3] and γp = 0.88 x 10 9 s-1 [17]. Then taking into account the conditions
x 2 « 1 and χ « γp « γ° we obtain

where magnetic fleld is measured in kGs.
The magnitude of the parameter d/'4. for Ps in quartz can be estimated

using the analogous data for muonium [2]. At room temperatures, when the fast
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Mu diffusion takes place, we have dMu /ω Mu -0.12 x 10 -3 . For Ps the D-wave
admixture forming the quadrupole moment in its ground state (see (3), (8), (10)) is
of the order of μeμp , whereas for Mu it is of the order of μeμμ . Taking into account
the fact that mμ 207m e, we obtain Q Ps 207QΜu . If we roughly assume now
that the electric field gfadient in quartz is the same for delocalized Ps and for fast
diffusing Mu, we obtain d/ω ^.s 4.70dMu /ω Μu -0.56 x 10 -3 (we used the vacuum
value for the frequency of the hyperfine  splitting of Ps in quartz). As a result, the
difference in the values of Ps magnetic quenching parameter for perpendicular and
parallel field is equal to

For Β 20 kGs we have ΔQ 0.06%. Then the differences of the parameters W,
E and R for parallel and perpendicular magnetic field are equal to Δ W 0.02%,
ΔR s: 0.06%, ΔR 0.02%, respectively†.

4. Conclusion

Above we have considered the effective quadrupole interaction of Ps in non-
cubic defectless crystals. This interaction was shown to lead to the weak anisotropy
of Ps magnetic quenching. According to the estimations obtained for delocalized
Ps in α-quartz, the magnitude of the anisotropy is of the order of one-hundredth
fraction of a percent. This corresponds to the small magnitude of crystal field
in quartz, on the one hand, but this is evidently too small to observe the effect
experimentally, on the other.

Recently the "anomalous" Ps was detected in some polymeric crystalline
structures (see [9] and the references therein). Such a Ps is characterized by
anomalously small hyperflne splitting (hyperfine splitting is an order of magnitude
smaller than that of free Ps in vacuum). Analogous phenomenon is well known for
Mu* atom in some inorganic crystals [18]. Except for anomalously small hyperflne
splitting, Mu* has a very anisotropic hyperfine  interaction of the form (1). In this
connection it is natural to assume the hyperfine interaction for "anomalous" Ps
to be a very anisotropic one as well. Then we can estimate roughly an order of
magnitude of the anisotropy of magnetic quenching for "anomalous" Ps in ori-
ented polymeric structures. For this purpose Eq. (19) should be modifled with
evident substitutions: γ° —> αγ°, ω —> (1/3)(Α || +2Α±), d --^ (2/3)(Α || -A±). For
"anomalous" Ps in isotactic polypropylene [9], for example, we have α = 0.55 and
^p 0.43x 10 9 s-I . As to the parameter 2(Α || -Α┴)/(Α|| +2A1), for Mu* in ma-
jority of crystals it is 0.7 [18]. Using this value for Ps in isotactic polypropylene
we obtain from "modified" Eq. (19) ΔQ 2 x 10 -3 B2 . For B 10 kGs we have
then ΔQ 20%. Thus the anisotropic magnetic quenching of "anomalous" Ps in
oriented polymeric crystalline stuctures appears to be observable experimentally.

Using the low teinperature (T < 70 K) ratio dMu/ωMu Π 2.08X 10 -3 as a starting point [8],
one can get an order of magnitude larger results than those obtained from (20). But the estima-
tions obtained from (20) appear to be inore realistic.
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