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The mechanical response in an N-electrode piezo-quartz bar where two
consecutive electrodes are separated by an unelectroded region has been
studied under electrical and thermal excitations. The bar is subjected to a
periodic polarization gradient and a constant flow of heat. The method of
operational calculus and Green's function has been used to solve the problem.
For time scale ranging from 0.1 to 1.0 s the response becomes a linear function
of time and is of the order of 10 -8 m.
PACS numbers: 77.65.—j, 77.70.-1-a

1. Introduction

The studies in the disturbances of a piezoelectric material from the stand
point of mechanics of continuous media have been initiated by Mason [1], Cady [2],
Redwood [3] and later developed by Mindlin [4], Rizzo [5] etc. They considered
the piezoelectric problems from the point of view of circuit theory where the situ-
ation provides two fields, viz. mechanical and electrical and certainly the studies
become more interesting if the above interaction is coupled with a thermal field
(Samoilov and Shchedrina [6], Balabaev and Ivina [7], Baranski et al. [8], Mun-
shi et al. [9]). Due to various applications in under-water signaling (Shiosaki and
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Kawabata [10], Imai [11]) the mechanical response of N-electrode piezo-quartz bar
has been studied by a number of researchers like Holland [12], Ray [13], Nowotny
et al. [14] etc. The present study is to investigate the mechanical response of an
N-electrode piezo-quartz bar in which two consecutive electrodes are separated by
an unelectroded region under periodic polarization gradient and a constant flow
of heat. Maxwell's equation, the equation of steady state heat flow and the rele-
vant piezoelectric constitutive equations have been used to solve the problem. The
variation of the disturbances with time ranging from 0.1 to 1.0 s is found to be
linear in nature and is of the order of 10 –$ m.

2. The problem, fundamental equations and boundary conditions

The problem considered here is an N-electrode piezoelectric bar (Fig. 1) such
that two consecutive electrodes are separated by an unelectroded region and with
the choice of the origin, the coordinate axes and the application of the mechanical
force, it is assumed by Nowotny [14] that the cross-sectional dimensions (w, r) are
small so that T1 (stress) and P1 (electric polarization) are functions of x and t
only. Here w, the height of the electrode, is along y-axis and r, the width of the
electrode, is along z-axis. The length of the electrode is taken along the x-axis.

We consider the bar to be subjected to a periodic polarization gradient and
a constant flow of heat. Our object is to determine the mechanical response that
stems from the interaction of electrical and thermal fields. The fundamental equa-
tions are therefore the equation of mechanical motion, the equation of electricity
and the equation of heat flow. The equation of mechanical motion is given by

where T1 is the stress, 1b — the displacement in the x-direction and p — the
material density.

The piezoelectric equations due to Mindlin [4] are given by

where Si. is the normal strain (= ∂ψ/∂x), E1 — the electric field strength, P1 —
the electric polarization, c11 — the elastic-stress coefficient, K11 — the electric
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susceptibility, e 11 — the piezoelectric stress constant, 0 — the temperature, pl —
the pyroelectric constant, al — the temperature coefficient. The other necessary
equation for this problem to complete the set of equations for the three effects is
the heat conduction equation

where K is the diffusivity constant and B is the temperature.
In accordance with our assumption,

where P0 and O0 are constants and

where α is constant and and q1 denote length of the left and right side of the
j-th electrode respectively.

3. Methods and solution

From Eqs. (la), (lb) with the aid of equation of motion we get

Now applying Laplace transform of parameter p to Eq. (4), we obtain from
Eqs. (4), (3a) and (3b):

where

It will be convenient to integrate Eq. (5) utilizing Green's function (Munshi
et al. [15]).
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As in Holland [12], Ray [13] let a force of value ωτ(c11 — e211/K11) be applied
to the bar in the x-direction at some point x2. Let the bar have no voltage and no
other forces applied and let the ends be free. We define Green's function evaluated
at some other point x1 to be the resulting particle displacement at the point.

Mathematically, this means Green's function G(x1/x2) obeys the differential
equation

with the boundary conditions

A Fourier expansion of solution for G(x 1 /x 2 ) may be found quite easily. Let
us assume

Therefore,

Here, we note that G(x1/x2) is symmetric in x1 and x2. In spite of the pre-
vious definition of x1 and x2, we shall have x1 the source coordinate and x2 — the
observer coordinate. The convention makes subsequent results more convenient.

The wave equation can be integrated for V1. Multiplying Eq. (7) by -1 1 (x1)
and Eq. (5) by G(x 1 /x 2 ) and subtracting second one from first one, let us integrate
the result from e to 1 — E, where e is an infinitesimal quantity as follows:
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For the boundary condition in Eq. (7), the first term within the bracket in
Eq. (10), i.e. ψ1(x1)∂G(x1/x2 )/8x 1 vanishes. The second term in Eq. (10) may be
expressed as

It can be shown that

where F1 and F0 denotes the force at x = I and x = O respectively.

In the case of piezo-quartz, e211/K11 — c11 < 0:
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4. Discussion

Equation (12) represents the mechanical response in an N-electrode piezo-
electric quartz bar under electrical and thermal excitations.

For numerical calculations, the values of the material constants have been
taken from Cady [2], Sasaki and Takeuchi [16], Gibbs [17] etc. while values like
w, 7,1, N, P0, 00, a and x2 have been chosen to facilitate numerical calculation as
follows:

Iii the material piezo-quartz, where e21 1/K11 — c11 < 0, the mechanical response
exhibited by Eq. (12) involves linear, transient and periodic function of time to-
gether with a large number of material constants. When e21 1/K11 — c11 > 0, the
mechanical response of N-electrode piezoelectric bar under periodic polarization
gradient and a constant flow of heat is found to be partly linear, partly transient
and partly hyperbolic function of time t.

In Eq. (12), the contribution of other terms is insignificant due to the in-
volvement of the term compared to the first term. As a result the disturbance
exhibits a linear relationship with time (Fig. 2) and is of the order of 10 -8 m.

As in Holland [12], Ray [13] let a force of value ωτ(c11 — e211/K11) be applied
to the bar in the x-direction at some point x 2 . Let the bar have no voltage and no
other forces applied and let the ends be free. We define Green's function evaluated
at some other point x 1 to be the resulting particle displacement at the point.

G(x1/x 2) is symmetric in x 1 and x 2 . In spite of previous definition of x 1 and
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x2 we shall have xi the source coordinate and x2 — the observer coordinate to
make results more convenient.

It is interesting to note that the expression given out by Eq. (12) yields
almost the same disturbances for different values of x2 viz. 0.2 m, 0.3 m, and
0.4 m. The variation of the disturbances with time for x2 = 0.4 m is shown in
Table.
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