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CHAOTIC DYNAMICS OF DOMAIN WALLS
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Chaotic dynamics and routes to chaos of domain walls in magnetic bub-
ble garnet materials in the presence of in-plane fields were investigated nu-
merically using Slonczewski’s equations of motion. Connection between the
structure of the wall and the character of the attractor was found. The in-
-plane field can play a role of the factor controlling chaos.
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1. Introduction

Spatially extended nonlinear dynamical systems are recently extensively in-
vestigated. A good physical example of such a system is a domain wall in magnetic
materials. In some conditions it exhibits an interesting chaotic behaviour [1-6].
Some years ago it was shown theoretically that for drive fields larger than the
critical field in infinite material a structural transition occurs in the wall and a
chaotic attractor appears in a properly chosen phase space [1]. On the other hand,
recently, it has been found for finite thickness samples that, if the magnetic stray
fields coming from surfaces of the material are taken into account in the calcula-
tions, a transition to chaos is realized via intermittency [5]. The so-called diffuse
domain walls observed experimentally in bubble garnet materials by Vural and
Humphrey {7] and analyzed numerically by Kosiriski [8] can be regarded as a proof
of the existence of chaotic motion of domain walls in such materials. On the other
hand, external in-plane fields play an important role in various computer mem-
ory applications of domain walls and strongly influence their dynamics [9]. It is
interesting therefore to investigate the influence of the external in-plane fields on
the chaotic dynamics and route to chaos with the drive field treated as a control
parameter. This is the subject of the present paper.
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2. Equations of motion

A domain wall in the uniaxial magnetic bubble garnet film is described by a
pair of nonlinear partial differential equations, which have been derived by Slon-
czewski [10] from the Landau-Lifshitz equation with Gilbert’s damping term in-
cluded

Z = 27 M~sin 2¢ — 2A7¢n 7” [H siny — (Hy + Hgy) cos ] + atp, (1)

. 29A _a.
¢—7H2+MAsz Aq, (2)

where the stray fields H,y from the surfaces of the film are taken in the form
proposed by Hubert [11]

h/2 — [z — 2Asinh(z/2A)/cosh(h/44)] 3)
h/2 + [z — 2Asinh(z/2A)/cosh(h/44)]

Here, A is the exchange constant, v is the gyromagnetic ratio, 4w M is the satu-
ration magnetization, o is the Gilbert damping constant, A = \/A/K is the wall
thickness parameter (K is the uniaxial perpendicular anisotropy constant), H, is
the constant drive field applied perpendicularly to the film, H, and H, are the
in-plane field components and A is the film thickness. In Egs. (1) and (2) g¢(z,?)
describes the local position of the Bloch surface of the wall and the azimuthal
angle 1(z,t) describes the direction of the local magnetic moment of the wall with
respect to 40z axis. The coordinate z is perpendicular to the film and parallel to
the easy axis of the uniaxial anisotropy of the film. A dot over a symbol denotes
the time derivative and the subscript zz — the second derivative with respect to
the z coordinate.

Equations of motion (1) and (2) were solved by means of a full implicit
numerical scheme, which is described in Ref. [9]. Force-free boundary conditions
were applied [10]. The initial conditions were ¢(z,0) = 0, ¥(z,0) = t5(z), where
¥s(2) is the static distribution resulting from the solution of Egs. (1) and (2) with
the time derivatives equal zero.

The material parameters were taken the same as in Ref. [5]. Namely, A =
0.81 x 10~7 erg/cm, 47rM-140G v =1.75x 107 s~10e"1, A—29x10 6¢
a=0.156and h=14x10"4¢

Heyy = 4Mn

3. Method of analysis

To analyze the type of motion of the wall, the trajectory i(zZ) of the mid-point
of the wall was calculated at each step of the integration procedure. The tilde
denotes that the values of § and % averaged over the thickness of the film were
subtracted from the instantaneous values of q and 1, respectively, because in this
paper we are interested in the wall structure during the motion but not the overall
translational motion of the wall.

Only asymptotical trajectories are analyzed, i.e. such for which all transients
are ceased.
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Our discussion will concern only this range of drive fields in which a transition
to chaos occurs (for small drives the domain wall motion is regular and will not
be discussed here).

4. Results and discussion

In the case of the external in-plane field applied to the considered film a
number of routes to chaos is found. Most common route to chaos is via intermit-
tency — similar to the case of the zero external in-plane field [5]. For example, for
Hy =3 Oe the upper bound of a periodic attractor is at H, = 26.53 Oe (Fig. 1),
while for H, = 26.54 Oe intermittency appears (Fig. 2) and above H, = 26.56 Oe
the chaotic attractor is observed (Fig. 3). Such a route to chaos occurs for small
values of H; and Hy, (for 0 < H, < 7 Oe and for 0 < Hy < 4 Oe). Another route to
chaos is found for Hy, = 5 Oe, where the transition is realized via another periodic
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Fig. 1. Periodic attractor at Hy =3 Oe and H, = 26.53 Oe
Fig. 2. Attractor for intermittency at Hy = 3 Oe and H, = 26.54 Oe. Note the trace
of the periodic attractor and otherwise the chaotic character.
Fig. 3. Chaotic attractor at Hy = 3 Oe and H, = 26.60 Oe.
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Fig. 4. Periodic attractor at [y =5 Oe and H, = 26.46 Oe.
Fig. 5. Periodic attractor at H; = 20 Oe and H, = 25.38 Oe.
Fig. 6. Periodic attractor at H, = 20 Oe and H; = 25.389 Oe.
Fig. 7. Chaotic attractor at H,; = 50 Oe and H, = 75 Oe.

attractor: at H, = 26.45 Oe the two-loop periodic attractor similar to that of Fig. 1
occurs, while for H, = 26.46 Qe the three-loop periodic attractor appears (Fig. 4)
and it is stable up to 26.94 Oe, where the chaotic attractor appears. In this way
the intermittency completely vanishes and the chaotic attractor is shifted to much
larger values of H,. It should be noted that the transition from the two-loop at-
tractor to the three-loop attractor is realized by long lasting transient after which
one of those attractors appears, depending on the value of the drive field. The third
route to chaos has an intermediate character: e.g. for Hy = 4 Oe, above the range,
where the two-loop attractor is observed — at H, = 26.50 Oe, the intermittency
appears at 26.51 Oe, the three-loop periodic atiractor is at 26.53 Oe, and the
chaotic attractor — at 26.55 Oe. In most frequent cases, when the route to chaos
is via intermittency, the upper bound of the range in which periodic motion is ob-
served as well as the lower bound of periodic motion decrease with an increase of
the in-plane field. However, when the periodic attractor appears during the route
to chaos, the chaotic attractor occurs at higher values of the in-plane field.
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Another route to chaos, where intermittency does not appear and the route
to chaos is realized by a sequence of periodic attractors, was found for H, = 20 Oe.
In this case a certain periodic attractor is observed at H, = 25.38 Oe (Fig. 5) while
at 25.389 Oe the three-loop double splitted attractor occurs (Fig. 6), next the same
attractor bifurcates further and finally the chaotic attractor is found at 26.60 Oe.
It is interesting that for H, = —20 Oe, for H, = 20 Oe and for H, = —20 Oe the
standard route by intermittency appears.

For large values of in-plane fields chaos occurs at relatively high drive fields
while for smaller values of H, another sequence of periodic attractors is obtained.
For instance for H; = 50 Oe the transition to chaos is observed for drives H,
about 51 Oe. The chaotic attractor found at H, = 75 Oe is shown in Fig. 7.

It should be stressed that in the range of chaotic motion many periodic
windows of different types and ranges of appearance were found. Most frequently,
a three-loop periodic attractor (similar to that in Fig. 4) is present near the lower
bound of the chaotic motion range.

In our computations the structure of the wall (z, t) was observed in order to
connect it with the type of attractor. During the motion of the wall, some coherent
spatial structures, the so-called horizontal Bloch lines; appear [10]. It was found
that in the case of the small drives the motion of the horizontal Bloch lines with
‘the angular span equal 7 is regular and periodic, while an increase of the drive
field and the in-plane field make the structure of the wall more complicated [9].
In particular the angular span of horizontal Bloch lines increases with an increase
in the values of in-plane fields and their motion is highly irregular in time. For
example, for H, = —50 Oe the processes of the generation and annihilation of 47
horizontal Bloch lines are observed. Regular or chaotic behaviour of the horizontal
Bloch lines in the internal structures of the wall reflects itself in regular or chaotic
type of motion and the level of complexity of attractor.

We found as an interesting result of our investigations that for some values of
drive fields small changes of in-plane fields can cause the change of type of motion’
from chaotic to periodic one. It happens when the three-loop periodic attractor
observed usually as a periodic window in the chaotic region shifts itself to such
low values of drive fields that the intermittency vanishes completely. In these cases
the chaotic motion is shifted to larger values of drive fields. This phenomenon can
be treated as a kind of controlling chaos with the in-plane field as a controlling
parameter. The role of the in-plane field is that it chooses some otherwise unstable
orbit and makes it stable. ‘
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