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1. Introduction

An increasing attention has been paid lately to the noise-induced transi-
tions arising in nonlinear systems far from thermodynamic equilibrium [1-12]. It
is known that the noise in nonlinear systems has not only disorganizing effects
but under certain conditions leads also to the appearance of nonequilibrium phase
transitions that have no deterministic analogues [9]. The Optical bistable system
with a medium of two-level atoms is one of the systems in which the noise-induced
transitions have been predicted; the external multiplicative white noise can in-
duce optical bistability (OB) [7-9] and multistability for high values of noise in-
tensity [10]. For the same system the colored noise influence on the OB has also
been studied, revealing that optical bimodality can arise from the multiplicative
colored noise, as well as due to the additive colored noise [11].

The theoretical study and experimental observation of the OB phenomenon
in semiconductors present a large interest owing to its possibility of practical ap-
plications. Many experimental results have demonstrated the existence of OB in
different types of semiconductors [13-15]. Theoretically, the OB in semiconductors
has also been investigated in a series of works [7, 16-18].
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The effects of the noise upon the OB in semiconductors have less been
dealt with and that is what we propose to do in this paper. Starting from a
Fokker—Planck equation (FPE) deduced by Kus et al. in Ref. [12] we analyzed the
influence of the incoming laser light on OB in the exciton—biexciton system.

2. OB in the exciton—biexciton system

A semiconductor interacting with an electromagnetic field in the vicinity
of the two-photon biexciton resonance can be described as an idealized system
involving two types of quasiparticles: excitons and biexcitons. Photons of the same
impulse can excitate the excitons from the ground state of a crystal and convert
the excitons into biexcitons. Because the quasiparticles behave as bosons we can
write the Hamiltonian of the crystal in the form

where α+(α) and b+(b) are the creation (annihilation) operators for the excitons
and biexcitons, respectively, and ħωex and ħωbiex are their corresponding transi-
tions energies. We have considered a single coherent mode for the excitons and
biexcitons.

The interaction Hamiltonian of excitons and biexcitons with the laser field,
in the rotating wave and electric dipole approximations, is given by [17]

where g is the coupling constant of the field with the exciton, o is the optical
convection constant of the excitons in biexcitons, E+(E — ) is the component of
electric field with positive (negative) frequency.

The full Hamiltonian of semiconductor interacting with a laser beam is

Using (3), we obtain the Heisenberg equations of motion for the operators α and b

where we have added the phenomenological relaxation rates γex and γbiex for the
exciton and biexcitons, respectively.

We consider the electric field to be classical, described by Maxwell's equation

where Q± = ħg(α +σα+b) is the polarization in the material and its form was
deduced from the Hamiltonian of interaction.
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The solutions of Eqs. (4)—(5) are supposed to be the product of slowly varying
envelopes and rapidly oscillating components with carrier frequency w and wave
vector k

Replacing the relations (6) into Eqs. (4) and (5) and using the slowly varing
approximation [19]

we obtain

Supposing that Tex and γbiex » 1 we can adiabatically eliminate the excitonic and
biexcitonic variables by putting the time derivative in (7a) and (7b) to zero. For
exact resonance we have

We substitute (8) into (7c) and we take e+ = εe— iφ. Neglecting the phase variation
we finally obtain an equation for the field amplitude alone

where

The semiconductor sample of the length L is placed into a ring cavity. Two
of the cavity mirrors have transmitting and reflecting coefficients T and R, re-
spectively, while the other two are assumed to be ideal. We use the well-known
boundary conditions for the field amplitude to the ends of the sample, at points O
and L

where EI, ET and ER are the amplitude of the incident field on the entrance mirror,
the amplitude of the exciting field from the cavity, and that of the reflected field.
From (9), in the mean field approximation [19] and with allowance for the boundary
condition (10), we can easily get the equation for the temporal evolution of the
field amplitude
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where x and y are the normalized entrance and exit field amplitudes, T is the
dimensionless time and c is a control parameter in the optical bistability theory.
These are determined by the following expressions:

In the stationary case Eq. (11) yields the equation obtained and studied in Ref. [18]

exhibiting a bistable behavior for c > 54/17 (Fig. 1).

3. External additive colored noise - induced transitions

In real conditions, however, the problem under consideration has different
sources of noises, both additive and ,multiplicative noises. We will consider below
the additive noise, taking as the main source of the noise the fluctuation of the
amplitude of the incoming laser beam, characteristics of which can be controlled
fairly well in experiments. The total driving electric field amplitude y(t) can be
written as a sum of two parts: a constant coherent part y o and a small fluctuating
part ξ(t), which we will consider to be an Orstein—Ulenbeck (0—U) process with
the mean value zero and the correlation function

where "a" measures the dimensionless intensity of the noise and b = γτC is the
coherence time Tc of the laser light expressed in the cavity linewidth -y. It can
immediately be verified that for b —> O with D = αb = const, the stochastic 0—U
process tends to the white noise limit; (t (1)) = O and (ξw(t)Gξw(t')) = 2Dδ(t—t').

Including the fluctuations of the incoming field amplitude, having the prop-
erty (14), Eq. (11) becomes a Langevin equation with an additive 0—U stochastic
process .

For evaluating the influence of the additive colored noise on the OB in the
exciton—biexciton system, we will use the one-dimensional FPE deduced in Ref. [12]
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where

D = αb and K(x) = 1 + bF'(x), F'(x) being the derivative of the function F(x).
In order to obtain the above FPE it was supposed that α < 1 and b ≤ 1.

Because the diffusion coefficient K(x) must be positive, one gets b < 1/(1 + 2c),
which is consistent with b < 1.

In the stationary case Eq. (16) yields

where J(x) is the stationary probability flux

Assuming the natural boundaries for the stochastic process we obtain the
equation J(x) = 0 for the stationary probability density P(x), solution of which
has the form [20, 21]

where N is the normalization constant and V(x) is the stochastic potential

In contrast to the deterministic case, in which the stationary states were
obtained under the condition F(x) = 0, stationary states in the stochastic case
must be interpreted as the points of the system's state space at which the sta-
tionary probability density P(x) takes on extremal values. The maximum points
of the function P(x) correspond to the most probable states of the system, and
the minimum points to the least probable. The extrema of the P(x) correspond
to the extrema of the potential V(x), the maximum points of F(x) correspond to
the minimum points of V(x), and vice versa.

To determine the stationary states of the system we put dV/dx to zero and
as a result we get

and

We see that the relation (21) which gives the most probable values of the stationary
probability distribution depends on two coefficients α and b which characterize the
laser amplitude fluctuations, and the parameter of bistability c.
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To analyze the behavior of the function f(x, q, c), and hence the behavior of
the stationary states of the system, we find the critical values of c and D from the
conditions f'. = f"xx = 0, equivalent to the following system of equations:

where

Taking into account that b is given by the relation b =11(1+  2c), (we have
chosen the equality) we can find the expressions for the parameters c and D

We considered only the nonnegative values of c and D.

Formulas (23) specify the parametric equation of the separatrix in the (c, D)
plane (Fig. 2.), which divides the range of the variations of the parameters into
two subsets A and B, in which the behavior of the function f(x, q, c), and hence
the dependence of the stationary states of the system on the amplitude yo of
the incident field, is markedly different. For (c, D) E A, the stationary probability
density P(x) is unimodal and the system possesses a single stable stationary state.
When the point crosses the boundary, separating A and B, bistability appears.
Depending on the amplitude yo of the incident field, the stationary probability
density P(x) is either unimodal, or bimodal, that is, the system has either one
stable stationary state or three stationary states, two of which are stable and one
unstable. The points belonging to the subset B' included in B, contained between
the critical curve and the dashed-line (Fig. 2), represent the points for which the
system becomes bistable only due to the noise, the value of parameter c being
under the critical deterministic value c = 54/17.

We have shown that the noise-induced transitions (bistability) can appear
due to the additive colored noise in a bistable semiconductor system in the exciton-
biexciton range of the spectrum.
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