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We develop a formalism to obtain minimum uncertainty states using
n-dependent annihilation operator. The formalism is applied to a three-di-
mensional harmonic oscillator and also to the one containing centrifugal
barrier term. Our formalism shows that in both the cases the minimum
uncertainty state can be written down as a product of the ground state and
a simple function.

PACS numbers: 03.65.Ca

1. Introduction

In the last ten years there has been tremendous interest in the study of quan-
tum mechanical states which give minimum value to the uncertainty product [1].
Several methods [2] have been proposed to obtain such states. The simplest be-
ing the annihilation operator method, in which one first constructs the step-down
operator which gives the state |n — 1) operating on the state In) of the system.
The minimum uncertainty state is then obtained by solving the eigenstate of the
annihilation operator. In several problems of physical interest it happens that the
annihilation operator depends on n. The purpose of the present work is to develop
a formalism to construct minimum uncertainty states using such annihilation op-
erators. We shall use the three-dimensional harmonic oscillator to bring out the
essential features of the present formalism, which is given in the next section.
Concluding remarks are presented in Sec. 4.

2. Formulation

We would first like to describe briefly the one-dimensional harmonic oscillator
whose eigenvalue equation is given by

(571)



where the radial eigenfunctions Rn (r) are given by
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where we have used the units h = m = k = 1 and the eigenfunctions On are given
by

Hn (x) being Hermite polynomials [3].
The step-down operator is given by

where p =
The minimum uncertainty state x(x) is the solution of the equation

where a in general is taken to be complex. In writing the solution of the eigenvalue
equation of the annihilation operator, one imposes the condition that the state x
must contain ground state. This condition will become important when we consider
the three-dimensional case later.

The solution of Eq. (4) is straightforward, it is given by

where A is the normalization constant.
We shall now consider the three-dimensional oscillator, where the annihila-

tion operator becomes n-dependent. We shall be concerned with the s-wave radial
equation which is given by

and n = 1, 2, ... It is easy to show that the step-down operator is now given by

and is n-dependent.
The main point of the present formulation is that the n-dependence of the

step-down operator can be written in terms of differential operator, which in the
present case is given by expression (6). We can therefore write the following equa-
tion using (6), (8) to determine the minimum uncertainty state x,

In order to solve this equation, we first write
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which gives

This can be re-written as

In order to solve Eq. (12) we first solve the following equation:

which can be easily solved to give

where A is a constant.
Applying the operator (∂/∂r + r) on Eq. (13) and comparing the resulting

equation with (12), we find

Remembering that the solution to (12) must contain the ground state Rn=1,
we finally get

Thus the minimum uncertainty state x(r) for the three-dimensional har-
monic oscillator is given by

To calculate the value of the uncertainty product, one could now calculate
the expectation values of the operator pr corresponding to radial momentum and
also of the radial coordinate r using the wave function x given by (17). Writing
q = f23, one finds, e.g., for r:

and similar expressions for (r 2), (pr) and (A2.), where q = qr + iqi and ( ) denotes
the expectation value and er f denotes the error function.

From these expressions we find that if |q| 	 →∞, the product [(r2) — (r)2]
x [(pr2 ) — (Pr) 2] —> 1/4, the minimum value.
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3. Harmonic oscillator with centrifugal barrier

As a further application of the formulation described in Sec. 2, we apply it to
the Hamiltonian H having an oscillator potential and a centrifugal barrier term.
It is given by

where )i is a positive constant.
The exact eigenfunctions of the Hamiltonian can be written down in terms

of confluent hypergeometric functions. Using the steps given in Sec. 2, we find that
the minimum uncertainty state x for this system is given by

where a is a complex parameter and Iµ is the modified Bessel function.
We note from expressions (17) and (20) that in both the cases the minimum

uncertainty state is a product of the ground state wave function and another func-
tion like Sinh or modified Bessel function. This can be very useful when one wants
to find minimum uncertainty states for the potentials for which exact analytic
eigenfunctions cannot be written down.

4. Concluding remarks

We have shown how to construct the minimum uncertainty states using
n-dependent annihilation operator. An explicit expression for the minimum uncer-
tainty state for the three-dimensional oscillator and one having centrifugal barrier
is given.

We remark here that Nieto and Simmons, Jr., had also discussed [2] the
n-dependence of the raising and lowering operators. In their work they had used
the recursion relation to arrive at the minimum uncertainty state using harmonic
oscillator with barrier as an example. Their final solution was obtained by com-
paring the expansion coefficients with the already derived state for the barrier
using quantum equation of motion, while here we have directly obtained the
differential equation and solved it with the condition that ground state of the
three-dimensional oscillator be obtained as a special case of the solution of the
differential equation.

As remarked in Sec. 3, our formulation can also be used to obtain approx-
imate minimum uncertainty states for potentials for which exact analytic eigen-
functions cannot be found.
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