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SPONTANEOUS PERSISTENT CURRENTS
IN MESOSCOPIC RINGS

Ε. ZIPPER AND M. SZOPA

Instytut Fizyki, Uniwersytet Śląski, Uniwersytecka 4, 40-007 Katowice, Poland

Persistent currents in mesoscopic systems made of a very clean metal
and with nearly flat Fermi surface are studied. It is shown that the inclusion
of the orbital magnetic interaction between electrons can lead to sponta-
neous currents (spontaneous fluxes) and to quantized flux trapping if the
number of interacting electrons is large enough: The energy of the system is
discussed and the self-consistent formulas for the spontaneous flux and for
the quantized flux in the system is derived. The influence of the spin on the
presented phenkena is discussed.

PACS numbers: 73.20.Dx

One of the most exciting areas of physics is the study of mesoscopic elec-
tronic systems, i.e. metal or semiconductor samples which are sufficiently small
and at sufficiently low temperature, such that inelastic electron-phonon scattering
is reduced and the electron propagates as a phase coherent wave throughout the
entire sample.

If we place the quasi-one-dimensional mesoscopic ring of a radius R in the
magnetic field perpendicular to its plane, .B z, the electrons fill the quantized
energy levels (for details see [1]):

where n parametrizes the orbital angular momentum in φ direction, φ 0 = h/e. To
each εn there corresponds a current

and the total current I is

where fFD (εn) is the Fermi–Dirac distribution function.
The system has a set of quantum size energy gaps — the gap at the Fermi

surface (FS) is Δ = (ħ 2 /mR 2 )nF , where nF numbers the last occupied state. For
the ring with a radius R = 400 Α we get Δ 300 K.

(79)
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The total energy is periodic in φ 0, the current at kT K Δ is persistent
because of the gap [1].

The flux φ, which drives the persistent current I(φ), is the sum of the exter-
nally applied flux φe and the flux φI from the persistent current itself

where φI = LI and L is the self-inductance of the system.
Most theoretical discussions neglect the second term, which is justified by the

experimental stuctures realized so far. Persistent currents driven by the external
flux have been predicted by Buttiker, Imry and Landauer [1] and experimentally
observed some years later [2].

However, if we consider a very clean system (ballistic regime), made of
M » 1 concentric metallic mesoscopic rings deposited along z axis, the flux φI is
substantial and cannot be neglected.

Equations (3) and (4) represent then two self-consistent equations for the
determination of the current I and the corresponding flux φ. They mean that each
electron moves not only in the externally applied flux φe but also in the magnetic
flux φI produced by all other electrons. Each current loop (channel) is equivalent
to the magnetic dipole. The magnetic dipole-dipole interaction is taken here in
the mean field approximation. It produces an internal magnetic flux and leads to
the nonlinear, implicit equation for the current.

It is also well known [1, 2] that the properties of mesoscopic systems depend
on the evenness or oddness of the number of electrons in a single ring. Let us
assume we consider the system of M mesoscopic rings stacked along z axis, each
ring having N electrons.

In case of N odd at φe = 0, Τ = 0 all states up to ±F are fully occupied.
One can calculate the total energy of such system (for details of the calculation
see [3]) .

This gives I = 0 in the ground state by pairwise cancellation of the currents in all
states.

In case of N even the last two levels ±F below the FS are occupied by a
single electron which leads to the spontaneous microscopic current.

The magnetic interaction of these microscopic currents from different rings
stacked one above another along the z axis leads to the magnetically ordered
ground state or, in other words, to the spontaneous macroscopic current or spon-
taneous magnetic flux (for details see [3]).

The total energy in this case is 	.

We get then two minima corresponding to spontaneous fluxes
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This flux is approaching ±φ 0 /2 in the limit of small γ and zero in the opposite
limit. In other words we have a spontaneous orbital current in the ground state

which remains persistent also for 0 < kT Ζ Δ.
Let us estimate the average spontaneous flux in case where some of the

rings carry an even and some of the rings carry an odd number of electrons. Let
us assume that the number of particles on each ring is governed by the Poisson
distribution with mean N [4]. Performing an average over the number of particles
we get an average current

where δ = 1/4e-2N.
We see that even for small N (e.g. N > 10) δ 0. The current (9) is periodic

in φ 0 /2, i.e. its period is half the period of the persistent current in a single ring.
Equation (9) together with Eq. (4) yield the spontaneous flux

Here again the factor δ can be very well approximated by δ1 ti 0. If the factor
γ is small (ΜΔL is large compared to φ 20 ) then φavSP,-^φ0/4. Thus the average
spontaneous flux and current are also halved compared to the case where all the
rings carry an even number N of electrons. If, for example, N = 2 x 104 , Μ = 10
and the height of the system of rings is I = 30 Å , then with the self-inductance for
the cylinder L = 2πμ 0 R2 /l, we get φSP , = Q0/15.

In the above calculations we neglected spin. It is to some extent justified
in mesoscopic systems because the orbital quantum numbers at the Fermi surface
are much larger than spin, and therefore usually one can neglect the contribution
of the spin momentum to the total momentum and assume the Hamiltonian to be
spin independent.

To take into account spin degrees of freedom, in this paper, we assume that
the energy levels εn can be occupied by two particles with opposite spin σ = 1/2 , -

 .

Because the spin energy splitting is very small compared to the orbital splitting
we can treat σ merely as a label. That kind of analysis has been performed in [4]
to investigate field induced currents. The energy and the current are then given
by

We are looking for the spontaneous currents
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Assuming that Ν = N1/2 + N- 1 / 2, where Nσ is the number of particles with spin
σ, we must distinguish four different cases according to the number of particles in
each ring.

(I) Ν = 4k + 1, where k is an integer
In this case four states ±nFσ just below the Fermi surface are occupied by

3 electrons and Νσ = 2k + 1, Ν-σ = 2k. The current is composed of -Todd for
electrons with spin σ and Ieven for electrons with -σ. We have

for N 1, 1/N can be neglected and we get the formula for the spontaneous current

In this case the four states ±nFσ are fully occupied and Νσ = N-σ
2k + 1 = N/2, i.e. we have an equal, odd number of electrons with σ = f 1/2

and we do not get the spontaneous current

In this case the four states ±nFσ are occupied by one electron and N, =
2(k + 1), Ν- σ = 2k + 1. The current is, similarly to the case 1, composed of Todd

and Ieven

In this case the four states ±nFσ are occupied by 2 electrons and N, =
N σ = 2k.

We get here
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One can observe that in cases (1) and (3) where N is an odd number, the am-
plitude of the spontaneous current is halved compared to the case (4), where two
electrons occupy the last state below the Fermi surface. In case (2) where the last
states below the Fermi surface are fully occupied the spontaneous current is zero.

Now we estimate the average spontaneous flux in our spin system. Perform-
ing averaging with the Poisson distribution analogous to the one in case of Eqs. (9)
and (10) we get the spontaneous flux

where

Here again we see that δ1' 0 and the result (18) is effectively equivalent with the
spinless case (10). Thus we see that spin effects do not show up in systems which
average over a large number of rings.

Discussion

We have developed a description for the electrons in a system of many
quasi-one-dimensional rings deposited along certain axis interacting via the mag-
netostatic interaction. It is shown that this interaction causes a current carrying
ground state by ferromagnetic ordering of the unpaired electrons at the Fermi level.

Ιn other words we get the spontaneous current or the spontaneous magnetic
flux in the ground state. The inclusion of spin does not change qualitatively the
results and the effect of spin averages to zero in a system of many rings with
different, but fixed number of electrons.

The details concerning the behaviour of spontaneous flux at T> 0 can be
found in [3].
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