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SOLID STATE QUANTUM INTERFEROMETERS
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S. WASHBURN

Deﬁartment of Physics and Astronomy
The University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-3255, USA

A brief review of quantum interference in small conductors is followed
by a discussion of quantum interference in ballistic conductors. The ballistic
conductors are characterized by conservation of the momentum vector and
this leads to a simple model for the details of the conductance of the sys-
tem. In contrast, for diffusive conductors one can only predict the statistical
behavior of the interference contributions to the conductance. The response
of the ballistic interferometers is governed by semiclassical physics of the
electron momentum states (i.e. the modes) in the quantum conductor. Un-
der circumstances of reduced backscattering of the modes, the interference
pattern appears to imitate that from a simple optical interferometer. New
results from ballistic interferometers are reviewed briefly. ‘

PACS numbers: 73.20.Dx

The advent some years ago of quantum interference experiments led to a
small revolution in the understanding of transport of electrons in the solid state [1].
First [2] in samples of size L much greater than the quantum coherence length L,
of the carriers and later [3] in samples of size L = L,, quantum interference was
shown to be a significant perturbation on the average (classical) conductance. The
quantum corrections to the average conductance arise through the interference
of coherently propagating carriers, which contribution was ignored in the calcu-
lations of the average (Drude) conductance. Carrier excitations from the Fermi
sea propagate for some distance and are scattered elastically by static impurities
(lattice defects) along the way. The probability for a carrier to propagate from
a certain point to another is given by the usual sum over all Feynman paths
W = |Y., Qn|? where Q, is a complex amplitude to propagate along the n-th
trajectory between the two points. The total conductance of a conductor with two
ports is G = (e2/h) 5", Wm, where W, is the transmission probability for the
m-th mode in the conductor. The excitations are annihilated by inelastic scatter-
ing from dynamic excitations such as other carriers, phonons, spins, etc. [1]. At low
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temperatures, there is very little thermal energy available to support populations
of dynamic excitations, and so the length scale Li, over which the excitations
propagate can be rather long, typically reaching several microns below a temper-
ature of T' = 1 K. In garden variety metals, the mean free path length I, which
is the length scale for elastic scattering from impurities, is much smaller — rarely
exceeding a few tens of nanometers. This means that in the metal, the excita-
tion propagates along a random walk undergoing many elastic collisions along the
way [2]. In contrast, in clean samples, where there is very little static disorder,
the elastic mean free path can be many microns or even millimeters. The cleanest
materials are single crystals of metals in which mean free paths of centimeters are
found [4], but in clean semiconductors, it is possible to make circuits in which all
circuit dimensions are smaller than the physically important length scales I and
L, [5).

Results from quantum transport experiments on both clean and disordered
samples clearly demonstrate the inadequacy of the simple average behavior of
the transport coefficients. In spite of the great number of independent transport
channels through even the smallest available conductors, and in spite of the vast
number of impurities in some of the metals samples, the fluctuations in conduc-
tance with rearrangement of the impurities do not shrink to zero [6]. Instead the
amount of fluctuation approaches a constant even for arbitrarily large samples (so
long as the whole region is within the phase coherence length). It approaches a
constant rather than vanishing as the sample size increases because of correlations
among the trajectories through the impurity potential [7]. The correlation is strong
for trajectories of excitations that are proximate in energy, and the contributions
of such trajectories add together “in phase” and reinforce each other’s contribu-
tion to the conductance [8], so that the effective number of trajectories is much
less than the simple classical estimate L2k2 (L is the sample dimension and kg
is the Fermi wave number), which for a 50 nm x 50 nm Au wire is & 10°. For
excitation energies that are disparate in energy, the trajectories are not correlated
and so their contributions to the conductance average together as random quan-
tities [9). The lack of reinforcement in the contributions of disparate trajectories
is a source of effective lack of quantum coherence, and it (rather than inelastic
scattering) usually provides the bound on the carrier phase coherence length L,
in experiments.

In clean semiconductors, where impurity scattering is minimal, [ can be tens
of microns. This is not to say that scattering occurs only after the carriers have
traveled a distance of several microns, but that, on average, the carrier goes about
a mean free path length before the momentum direction is reversed. In fact there
are a large number of “soft” scattering events along the way that deflect the carrier
direction slightly, but do not prevent the carrier from continuing along nearly the
same direction [10]. The value of [ is inferred from the measured conductance, so it
is heavily weighted by carriers whose momenta are reversed (backscattered so that
they do not reach the sensing contacts), and ! is largely oblivious to small angle

scattering. Even so, the small angle scattering occurs only over comparatively .

large distances (300-500 nm) with respect to metals, and the lack of scattering
has several remarkable consequences.
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For example, if two large area conductors are joined by a small “point
contact”, the conductance between the two large conductors exhibits steps as a
function of the width of the contact [11]. The devices comprise a high mobility
two-dimensional electron gas (2DEG) with either two patterned gate electrodes
that nearly meet at a point on the surface [12] or a single continuous sheet of gate
metal that covers the entire device region but is recessed from the carriers in re-
gions where carriers are to remain [13]. Schematic drawings of the device structure

Fig. 1. (a) Schematic drawing of a point contact of length L and width w joining two
large area conductors. (b) A similar structure in the shape of a loop interferometer.
(c) Details of the crystallographically etched heterostructure and “global” gate used to
implement the devices such as (a) and (b).

appear in Figs. la and lc, where for the first scheme the shaded regions might
depict the gate metal and in the second scheme they depict etched regions that
allow the gate metal (Fig. 1c) greater capacitive influence on the 2DEG. When the
gates are biased to deplete the carriers beneath them, they pinch the point con-
tact reducing both its depth and width electrostatically. The steps arise in G(Vg)
because the individual modes (quantized transverse momentum) are resolved, and
because the individual modes propagate adiabatically (Wy, = 1) through the point
contact. Each mode contributes independently to the total conductance. The steps
in conductance arise as the new modes pop through the Fermi surface one at a time
so long as their separation exceeds kpT'. Experiments in weak [13, 14] and strong
[15] magnetic fields obtained very non-classical behavior as well in the magne-
toresistance, which has been attributed to extraordinary momentum conservation
lengths [16]. As the magnetic field B increases and hw 3> 1 (where we = eB/m
is the cyclotron frequency), the transport crosses over to a “globally adiabatic”
regime [17] where the momentum conservation length is many millimeters [18].
So far only singly connected structures have been discussed. These have the
generic form shown in Fig. la, where two wide conductors are connected by a nar-
row port of length L and width w. Another somewhat more versatile tool for study-
ing quantum interference is a loop structure shown schematically in Fig. 1b. The
structure is reminiscent of optical two-slit interferometers [19], Aharonov-Bohm
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effect experiments [20] and the cylindrical sample geometries used to explore mag-
netic flux quantization and order parameter rigidity in superconductors and metals
at low temperatures [21]. Experiments on clean structures of this geometry and
its variations are the topic of the following discussion.
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Fig. 2. (a) Illustration of random walk trajectory (arrows) scattered by impurities
(dots) in a disordered conductor (heavy lines). (b) Illustration of adiabatic trajectories
(including reflected trajectories in the wide areas) in a ballistic conductor. In both (a) and
(b), the dotted line represents the phase coherent region. (c) Schematic of the interference
experiment with loop sample that might support diffusive trajectories (upper half) or
ballistic trajectories (lower half). The loop is surrounded by insulating (shaded regions)
and a uniform magnetic field (pluses) penetrates the whole sample area.

+ + + + + 4+

The difference between the two regimes is portrayed in Figs. 2a and b. The
carriers in the diffusive conductor (a) ricochet among the impurities, but in a
ballistic conductor they pass through the constriction adiabatically (joining on
continuously with transport states in the wide regions of the conductor [17, 22]).
The two systems have very different conductances. The diffusive response is gov-
erned by details of the scattering of a large number of trajectories among the
impurity sites. ‘This leads to a random component to the conductance, which can
be predicted only in the statistical sense. In fact, the details of the conductance are
sensitive to the positions of every impurity, and moving so much as a single one
completely “rewrites” the interference pattern [23]. In the ballistic conductor, on
the other hand, the trajectories follow the walls of the conductor, and in principle,
they can be governed by the architeét of the conductor. Its conductance can be
predicted in considerable detail through precise modeling [24].

One useful question to answer is: can one implement such a predictable
solid-state interferometer? An affirmative answer to the question above appears to
be given in the data of Figs. 3 and 4 and in data from other experiments at high
magnetic field [15]. Figure 3 contains G(Vj) for a loop sample (average diameter
L = 1.6 pm) made from a high mobility GaAs/Alg sGag.7As heterostructure [25]
and two traces G(B) at fixed V from the same sample. The loops comprise crys-
tallographically etched conductors forming a ring with annular width w, = 0.4 ym
connected to wide areas by ports of width w, = 0.3 pym and length L, = 0.5 pm.
It is important to notice that the ports alone are too long to exhibit ballistic con-
ductance in other device manufacturing schemes [26], which appear to have been
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Fig. 3. G(Vg) measured at T = 4.2 K for a loop structure. The abscissa has been
shifted to account for the difference in threshold voltage between the 4.2 K experiment

and the 0.02 K experiment (adapted from Ref. [25]).
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Fig. 4. Magnetoresistance of a loop measured at three different gate voltages (refer to

Fig. 3) at 7= 0.02 K in a carefully shielded environment (adapted from Ref. [25]).
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limited by the forward scattering length of a few hundred nm. Nevertheless G(Vj)
contains steps typical of momentum mode preservation, i.e. ballistic transport.
The reason for the qualitatively different results from these devices is not clear.
It might be related to deformation potentials caused by the gate metals [27], but
this question awaits more serious study.

The magnetoresistance traces in Fig. 4b are (top) from a terrace in the G(Vg)
staircase at V; = 0.15 V and (bottom) from nearby Vi = 0.22 V. The random
character is evident in the lower trace and there is apparent lack of randomness in
the upper trace. Both magnetoresistance traces comprise conductance components

G(B) = Gclass+2 [G (B) cos ( we ) (B)]

Here @ is the magnetic flux enclosed by the loop and «;(B) is a random function
of B that accounts the random amounts of flux enclosed by different trajectories
through the loop. The periodic modulation of the AB oscillation amplitude in the
Vg = 0.15 V data arises from trapping of cyclotron orbits on the loop when the
cyclotron orbit size of a particular mode matches the size of the loop [28]. The
effect of the orbit trapping is of course to increase the average resistance and to
change the probability of interference P for the trajectories.

For the Vg = 0.22 V trace G1(B) is rather small and randomly fluctuating
in B. In the Vg = 0.15 V, however, the amplitude oscillates more-or-less periodi-
cally in B, and it is a factor of about 5 larger. Both the large amplitude and the
regular pattern of “beating” of the AB oscillation amplitude are reminiscent of
very simple interference experiments such as might be seen in two-slit optics. It is
very difficult to surmise that it results from random scattering of the carriers by
impurities. The degree of randomness in the AB oscillation amplitude G1(B) has
been correlated to the step structure in G(Vg) with some success [29].

Although rather good modeling of the interference pattern is possible in open
geometries [15], there has yet to be any firm correlation between the interference
data from loops with device model calculations. In fact some device model calcu-
lations [30] tend to preclude the possibility of ballistic transport on the size scale
(wL = 5 pm) of the devices used to obtain the data. Given the dramatic differ-
ence in the quality of the interference signatures from the two regimes of device
operation, we are unable to draw any conclusion except that the ballistic motion
of the carriers is dominating at Vz = 0.15 V.

Figure 4a contains resistance measured below the threshold for ballistic con-
ductance where not even a single channel propagates without tunneling. It is con-
ceivable that the situation might mimic the double-barrier tunneling configura-
tion, which is being modeled with enthusiasm to infer the behavior of interacting
strongly electrons (Luttinger liquid). This is not deep in the tunneling regime, but
the sample resistance is as high as necessary to observe the predicted Luttinger
effects. For very low density electron gases, one expects that the interactions to
change the effective electrical charge of the carriers [31]. So far the experiment has
not confirmed this prediction, but the predicted effect is weak and the experiment
still rather crude.
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The same kind of experiments can be performed at high magnetic field,
where Aw: < 1 and the transport is dominated by edge states that maintain their
momentum for macroscopic distances [16]. The high field magnetoconductance
of several ballistic conductors has pointed toward even greater opportunity to
make predictable interferometers — at least in an open geometry [15). In the loop
samples, G(B) from coupled interferometers allowed measurement of L, through
analysis of the AB oscillation amplitude. The amplitude is proportional to the
probability to interfere and the probability to retain phase coherence, i.e.

nw? nL
Gn(B) o exp (-—E) exp (—f;-) = P,Z,,

where 73 = h/enB is related to the confinement of the wave function by the
magnetic field. The first factor decays at high field and the second factor has been
presumed widely to be a constant independent of B [32]. By fitting (at very high
field where it dominates) and scaling out the scattering probability P, we have
obtained the bare phase coherence factor

Gn(B)
exp(—0.49nB)’
which is plotted in Fig. 5a for n = 1 and n = 2. In addition to the large fluctuations
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Fig. 5. (a) Amplitude functions Z1(B) and Zz(B) after normalizing them by removing
(in a crude approximation) the scattering probability Pn = e~%497B _(b) Inferred values
of L, obtained by averaging G1(B) and Gz(B) (symbols in (a)) and inverting the
formula in the text (adapted {from Ref. [33]).
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that appear with the Shubnikov-de Haas peaks the average amplitudes clearly
are increasing with increasing B at low field. We can explain this increase with
an increase in L,, and the smooth curves in the figure are fits to both of the
amplitudes with a single linear function L,(B) = 2+ 1.3B, where L, is measured
in pm and B is measured in tesla. The lower panel in the figure contains the Z,
inverted to calculate the inferred values of L,. Error bars are estimated as well
and of course they become large when L, >> 7L and the exponential approaches
unity [33].

While tantalizing, the results have not completely confirmed the possibility
of predictable ballistic interference devices. Dramatic correlations between gate
voltage and oscillation amplitude have been observed previously in samples where
there was no clear mode counting staircase in G(Vg) [34]. Better controlled experi-
ments and detailed theoretical modeling are needed to make more progress in this
field.
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