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OPTICAL PROCESSES IN QUANTUM WELLS
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A review is given of the theoretical framework of exciton dynamics in
quantum wells including the spin degrees of freedom. A study is made of
various momentum, energy, and spin relaxation mechanisms including the
effects of exciton-phonon interaction, the single-particle spin-flips by means
of spin—orbit interaction and the exciton  spin-ffip by means of the exchange
interaction. All these competing mechanisms are taken into account in a set
of equations governing the time evolution of the exciton spin populations.
Solutions are then used to interpret observed time-resolved observations of
polarized luminescence spectra. For excitons in a two-dimensional system
such as a semiconductor quantum well, the breaking of the translational
symmetry in the direction normal to the interface plane has been shown
theoretically by Hanamura, by Andreani and Bassani, and by Citrin to result
in a reckbination rate much faster than in a three-dimensional system.
Yet, experiments show ckparable decay rates in two- and three-dimensional
excitons. Recent experiments with high time resolutions show two decay
times for the total luminescence intensity. The slower one agrees witl the
one usually observed and interpreted as the radiative recombination time.
We shall give an explanation for the fast decay as a ckbination of radiative
recombination and single-particle spin-flip and for the slow decay as the
radiative recombination slowed down by the presence of lower energy dark
states for excitons with parallel spins. The ability to use the same theory to
account for the polarization behavior confirms the importance of the exciton
spin dynamics. Furthermore, the longitudinal electric field dependence is
used to check our theory of exchange.

PACS numbers: 73.20.Dx, 78.55.Cr

1. Introduction

Electrons confined in semiconductor heterostructures [1] have been much
studied both theoretically and experimentally. From the theory viewpoint, opti-
cal processes provide an excellent source for gaining knowledge of the electron
dynamics as well as an excellent testing ground of our understanding. From the
experiment viewpoint, recent rapid progress in the time-resolved spectroscopic
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measurements in semiconductor heterostuctures makes possible very direct mea-
surements of the time evolution of certain electronic processes [2-7]. Yet, inter-
pretation of the measurements requires a good theoretical framework. We propose
here to bring out a number of recent issues in optical processes which emphasize
the distinct quasi-twodimensional nature of the quantum wells and which require
the interplay of experiment and theory to build an understanding of the underlying
electronic dynamics.

In the following, we begin with the basic model of the semiconductor quan-
tum well and the rules governing the optical excitations. We examine a number of
features which distinguish the quantum wells from the bulk which make the wells
worth studying. Then we describe the physics underlying the dynamics of the ex-
citons including the spin degrees of freedom. Application is made to analyze the
measured time-resolved polarization spectra. Finally, we point out a few directions
for further research.

2. Fundamentals of the carriers and the optical processes

We use the multi-band effective-mass approximation to represent the elec-
tron and hole states as products of the envelope functions modulating the Bloch
waves at the band edges. In a bulk III-V direct-gap semiconductor, the conduc-
tion band edge has Γ6 symmetry and the z-component of the electron's angular
momentum is represented by s with s = ± 1/2 . The valence band edges are the re-
sultant of the spin-orbit mixing of the p-like orbitals and spin 1/2. The fourfold
degenerate states, called the heavy hole states, have symmetry Γ8 and the in-
dex mv which describes the valence electron spin states and which is isomorphous
to the z-component of the angular momentum of spin 3/2. We shall represent the
valence-hole spin states by the time-reversed states of the electronic Bloch states
and associate the index mh with the hole spins so that mh = -m v . Hole subband
mixing from the off-diagonal part of the Luttinger Hamiltonian [8] can be thought
of as k • p mixing. Quantum well confinement gives the envelope as free waves
along the interface plane with a well-defined wave vector and discrete quantum
states for motion along the growth axis (normal to the interface plane).

As an example of the optical processes, let us study the photoluminescence,
which may be regarded as a three-step process (Fig. 1a):

1. excitation in which a photon is absorbed raising an electron from a valence
subband to a conduction subband;

2. relaxation in which the electron in the conduction subband and the hole
in the valence subband relax to quasi-equilibrium states near the respective
band edges;

3. recombination in which the electron-hole pair annihilates emitting a photon.

In a pump-and-probe experiment, the excitation of the system by intense light
replaces step (1) and the absorption of light from a weak probe replaces step (3).

Optical transitions across the direct gap of a IlI-V semiconductor depend
not only on the energy difference of the conduction and valence subband states



To study the time dependence of the polarized intensities, we find it more conve-
nient [10] to use the total intensity

and the "spin" intensity
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but also on the nature of their wave functions. We classify the light with circular
polarization σ- and σ+ respectively with polarization vectors

We assign photon angular momentum m values 1 for the σ+ polarization, —1 for
the σ_ polarization, and 0 for the p-polarization with vector Αz . Then a straight-
forward evaluation of the matrix element of p — Α yields the selection ule [9]
which expresses the angular momentum conservation along the z-axis:

The schematic arrangement shown in Fig. 1b shows a typical way to measure
the luminescence polarization. Α circularly polarized light, say σ+, is normally
incident on the quantum well. The emitted light at a small angle to the normal
is passed through a polarizer and the intensity of the light for each polarization
σ+ and σ_ is measured. The fractional difference of the intensities of the two
polarizations is defined as the polarization:
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The luminescence intensities of the two polarizations depend on the initial
spin populations [11] of conduction electrons and valence band holes created in
step (1) of Fig. 1a and spin relaxation of these carriers in two stages: during the
energy and momentum relaxation of step (2) and before recombination ,in step
(3). When the initial energy is much larger than the band gap, the electrons and
holes after energy relaxation can either radiatively recombine or combine into exci-
tons and then undergo radiative recombination. Time-resolved photoluminescence
gives a measurement of the exciton formation time [5]. An alternate way to per-
form photoluminescence is to resonantly excite the heavy-hole excitons [12], which
form a colder population than the lattice and can be scattered by phonons into
a higher temperature quasi-equilibrium state before radiative recombination. It is
the momentum and spin scatterings after resonant excitation which will occupy
our attention here.

The first issue to raise here is the importance of studying the carrier and
exciton dynamics including the spin degrees of freedom. We shall see an example
later that even for experiments which involve only unpolarized light one requires
for their understanding the intermediate steps involving spins.

3. Distinction features of reduced dimensionality

In bulk semiconduction the connection between spin dynamics and polarized
light leads to the socalled the optical orientation [13]. Many of the energy and
spin relaxation mechanisms in the bulk in principle apply to the quantum wells as
well but in quantum wells the dependence of each mechanism on system properties
differs from the bulk and, therefore, the relative importance of the various mech-
anisms in given ranges of temperature and carrier density is different. Four major
features in quantum wells lead to distinction of the carrier and exciton dynamics
from the bulk:

1. Mechanisms for radiative recombination in the quasi-twodimensional sys-
tems are radically different from those in three-dimensional systems. There-
fore, the recombination times ought to be different as well. We shall elaborate
on this presently.

2. Quantum confinement of electrons leads to subband structures. An example
of the confinement effect is the slow-down of the valence hole spin relax-
ation in the quantum well compared with the bulk, leading to a different
and more satisfactory explanation of the cw luminescence polarization in
quantum wells [11], particularly the polarization reversal effect [9].

3. The enforced close proximity of the electron-hole pair leading to a strong
exciton binding in a quantum well, giving rise to the prominent role of the
excitons in the optical processes in the quantum well. It is also expected to
lead to a strong spin relaxation due to exciton exchange [10].

4. Molecular beam epitaxy growth of thin layers and modulation doping lead
to high-mobility samples. Mechanisms which depend on motional narrow-
ing [14], shown below to be of common occurrence, are sensitive to carrier
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momentum relaxation and should, therefore, play quite a different role for
the high-mobility quantum well than for the dirty bulk semiconductor.

Radiative recombination of excitons in two-dimensional systems has been
studied by a number of authors [15-18]. In a three-dimensional system, the linear
coupling of photon and exciton mixes them into two branches of combined ex-
citations, called polaritons [19], which can propagate unimpeded throughout the
crystal. Decay, or recombination, can only occur in the presence of imperfections in
the crystal, such as point defects, phonons, and surfaces. The recombination time
is relatively long, of the order of nanoseconds. The breaking of the translational
symmetry, say along the z-axis, leads to on the one hand a well-defined dispersion
curve for the excitons versus the wave vector k|| in the interface plane, and on the
other hand to a continuum of curves for the photon given by

for a whole range of values of the z-component of the light wave vector, with a
finite and zero value of kz illustrated in the left-hand part of Fig. 2. For a fixed

k||, as shown by the vertical dashed line, the density of state of the photons is a
continuum as shown on the right of Fig. 2, which also shows the corresponding
exciton density of states as a horizontal thick line representing a δ-function. The
linear coupling between light and exciton can now broaden the exciton line into a
peak with a finite width giving a measure of the exciton lifetime due to radiative
recombination. Estimates by the authors quoted above give a lifetime of a few
tens of picoseconds, i.e. between one and two order of magnitudes smaller than in
three dimensions.

Yet, until recently, photoluminescence in quantum wells always leads to a
radiative recombination time of the order of nanoseconds. Recent experiments with
better time resolution [6, 12] have seen a fast initial drop in luminescence intensity
but the long nanosecond tail remains. Thus, we need a theoretical framework to
interpret the initial drop and to explain the long tail.
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4. Exciton spin dynamics

When a photon is absorbed to resonantly excite an exciton with electron and
hole spins denoted by (s, mh), the polarization of light is governed by the selection
ule Eq. (2.2), i.e. light propagating along the z-axis with circular polarization with
m takes on the value -1. The s+mh = -2 excitonic states are said to be optically
inactive since they cannot be created by single-photon absorption although they
can be excited by two-photon processes.

Consider, for example, the lowest energy heavy-hole exciton. The mh = -3/2
components dominate the constituent valence hole of the exciton, so that the
total exciton spin, from Eq. (2.2), is -1 or -2. From the selection rule described
above, the spin -1 excitons are optically active and the spin —2 ones are inactive.
The exciton spin can be changed by flipping the spin of either the electron or
the hole or by simultaneously flipping the spin of both constituents. The electron
can relax its spin by the D'yakonov-Perel [20] or Elliot-Y-afet [21] mechanism.
Both mechanisms require substantial phase space for momentum scatterings to be
effective in changing the spin. The valence hole can relax its spin through energy
relaxation which changes the heavy- and light-hole mixing of the valence state [11].
The electron spin relaxation time is at least an order of magnitude longer than
the hole or exciton spin relaxation time [22].

To flip the exciton spin from +1 to -1 or vice versa requires the exchange
interaction [10]. The exchange interaction may be separated into a long-range
part and a short-range part. The long-range part of the exchange interaction is
the simple dipole interaction, of the form Γ231

where K, is a component of the total momentum of the exciton. The constant μ
also contains the exciton wave function at zero distance and the overlap integral in
the z-direction. The coupling between two optically active states is analogous to a
magnetic field in the xy-plane which will flip the exciton spin. If the center-of-mass
momentum of the exciton is changed by scattering by defects or by phonons, the
resulting fluctuating effective magnetic field causes spin relaxation. This is analo
gous to the motional narrowing effect in the nuclear spin relaxation in a metal [14].
Thus, the inverse spin relaxation time of the exciton is proportional to the time
correlation of the long-range exchange matrix element or to the autocorrelation
of the square of the momentum, (Κx - iKy ) 2 , or equivalently to the momentum
relaxation time. The faster the momentum changes, the longer the spin relaxation
is. The condition for the validity of this treatment is that the momentum scat-
tering rate has to be larger than the spin precession rate. The spin relaxation by
the long-range exchange requires finite center-of-mass momentum. The final wave
vector acquired from the excitation light gives a negligible contribution. however,
in resonant excitation of excitons, thermalization of the exciton population [10, 12]
gives the exciton sufficient momentum for the long-range exchange to be effective.
The inverse proportionality of the spin relaxation time to the momentum relax-
ation could also explain the sample dependence of the polarization relaxation [5].

The short-range part of the exchange interaction is of the form σ - J, where
σ and J are the electron and hole spin vectors. The exchange constant is enhanced
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over the bulk value by the square of the ratio of the exciton wave functions at
zero relative distance between the electron and hole times the square of the overlap
subband wave functions along the z direction [24]. The spin angular momentum
conservation of the short-range exchange means that there is no direct matrix el-
ement which flips the exciton spin from (-1/2, 3/2) to (1/2, -3/2) or vice versa.
Only a combination of the short-range exchange with the heavy- and light-hole
mixing can flip the exciton spin. For example, one can connect the heavy-hole
exciton (-1/2, 3/2) to the light-hole exciton (1/2, 1/2) and then by the Luttinger
Hamiltonian for the valence bands from (1/2, 1/2) to the heavy-hole exciton state
of the opposite spin, (1/2, -3/2). The latter step involves nonzero hole momen-
tum. Thus, the momentum scattering again leads to a motional narrowing type of
spin relaxation. Our estimate [10] for the GaAs/AlGaAs quantum well in Ref. [5]
shows the short-range exchange contribution to be an order of magnitude less than
the long-range part. With momentum scattering estimated from the width of the
exciton line and the exciton temperature deduced in Ref. [5], we obtain a spin
relaxation time about half that of the measured time of 50 ps. Since the exciton
exchange increases in strength with decreasing well width, the spin relaxation rate,
proportional to the square of the exchange interaction, is expected to increase with
decreasing well width. However, the dependence is weakened somewhat by the de-
crease in the momentum scattering rate. Our calculated well-width dependence
for the series of wells measured in Ref. [7] is in good agreement with the measured
well width dependence of the polarization rate.

A way to test our theory of the spin relaxation time is to make controlled
changes by external means, such as stress, magnetic or electric field along the
growth axis. The effect of weak magnetic fields (i.e. without the well separated
Landau levels) was given in Ref. [10]. An electric field applied along the z-axis (the
growth direction) will polarize the exciton (increasing the separation between the
electron and hole) This strongly affects the long-range part of the exchange since
it depends strongly on the overlap between the electron and hole wave functions.
Other possible effects caused by the introduction of the electric fleld, such as the
increase in the impurity- and interface-related scattering processes, are neglected.
The calculated increase in the spin relaxation time with the longitude electric field
is in fair agreement with experiment [25]. This lends support to the role of the
exchange interaction for exciton  spin-flip.

5. Time development of the electron spin populations

The time development of the population of excitons of total spin m = s+mh
is formulated as a set of rate equations [10, 26]. The equations contain radiative
recombination. We model the momentum distribution by just two sets of pop-
ulations, those in the radiative recombination regime (small in-plane momenta)
and those outside (large momenta). We allow for the momentum scatterings of
the excitons changing their center-of-mass momenta by scatterings between these
two momentum distributions. The spin-flips from -1 to —1 are due to exchange
interaction via motional narrowing. The spin-flips from —1 to -2 and vice versa
are given by the individual carrier spin-flips with the thermal faction governed
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by the energy difference between the spin levels, with the optically inactive states
lower in energy. The recombination times and relaxations are then chosen to fit
the calculated time evolution of the light emission of both polarizations to experi-
ment [12, 25]. The spin relaxation rates are in good order of magnitude theoretical
estimates. Their dependence on the longitudinal electric field and on the well width
is in good agreement with theory.

The initial fast drop of the intensities of both polarizations is due to the fast
recombination time in twodimensional systems. Part of the exciton population
generated by light relaxes to the lower energy optically inactive states. Thermal
excitation back to the active states as they are depleted by radiative recombination
gives the long tails.

6. Future directions

In the moderate magnetic field regime, theory [10] shows increase in the
exciton spin relaxation time but there is yet no experiment. In the high magnetic
field regime, where Landau levels are important, there are experiments [27, 28]
but yet no theory.

In the time regime shorter than the ones considered here, the system is
dominated by the coherence effects. There are interesting many-body effects to
be incorporated in the optical processes in experiments such as four-wave mix-
ing [29, 30].

Another spin system can be added to the wells by doping with magnetic
elements, such as has been done to CdZnTe quantum wells by adding Mn. This
gives rise to coupling with another spin system of different spin relaxation times
which can influence the exciton spins [31].
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