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The generalised form of the gap equation which comprises also some
non-BCS approaches is defined and solved. The parametric gap equations
have been derived in a few equivalent cases and discussed in_ dissimilar
limits. It is shown that the relations between the critical temperature and
zero-temperature energy gap can be extended for all systems under con-
sideration. The main benefits and incontestable advantage of the presented
method are demonstrated with regard to the general BCS case.
PACS numbers: 74.20.-z

1. Introduction

Recently, some new mechanisms of pairing interaction are included in BCS-
-type superconduction [1-4]. The inclusion of additional faction modifies BCS
Hamiltonian [5] and hence quasi-particle energy which can give rise to recon-
stuction of a gap equation. Though one can expect such enriched stucture of
the energy gap to imply new results the applied calculation methods have to be
transposed from BCS formalism.

The purpose of this paper is to present the systematic calculation methods
which are just general enough to apply to derive and evaluate the energy gap in
generalised BCS case. The obtained results can be directly applied to specified
models [1-5]. We also demonstrate in detail the main benefits and indisputable
advantage of our method with respect to the general BCS case when external
magnetic field and superflow are included.

2. General form of a gap equation solution

We assume that for a wide class of S-paired quasi-particle Fermi systems
(superconductors) the gap equation can be written in the following general form
(cf. [6]):

(1007)
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where λ= N(0)gis the dimensionless couplng parameter, and α andbdenote
parameters connected with external fields e.g. a magnetic field and a superflow. We
assume only about the function F(l1,l 2 ,l 3 , l4) that its properties are analogous as
for BCS case i.e. it is restricted and in limiting cases can be approximated according
to relations

if l 1 or /2 tends to infinity. The latter property of the function F is also correct
for other arguments /3 and /4 , however it can be left out of account because the
arguments have to fulfil the condition |l3 + 14| < |l2| which ensures the stability of
superconducting phase.

In BCS case the function F(11, l2 , l3 , /4) is of the form

where H denotes an external magnetic field and Vs is bare quasi-particle superflow.
We emphasise that these quantities should be replaced by their effective fields if the
Fermi liquid interaction is included [6]. Note moreover that for BCS case F∞ = 1
and F is an even function of H and Vs .

Let us present now the calculation method which allows us to evaluate and
solve the gap Eq. (1) effectively. To facilitate calculations we introduce dimension-
less quantities

where Tc is an arbitrary constant in energy (temperature) scale. Now, after inte-
gration by parts Eq. (1) reduces to the form

where because of quick convergence of the integrand we have right to expand the
upper limit of the integral up to infinity. Note that we can rewrite (5) in polar
coordinates according to relations

which allows us to obtain a very convenient parametric form of the energy gap.
Before we do it let us introduce dimensionless quantities
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which will definitively simplify the problem under consideration. Then, after some
algebra, Eq. (6) can be reduced to the form

or equivalently to

Equations (9)—(10) allow us to write down the parametric equations for energy
gap versus temperature in reduced units i.e. we get from Eq. (9) or Eq. (10)

respectively and moreover we have

However, the above equations contain two constants i.e. λ and ω D which are
inconvenient for detailed evaluation. Fortunately, we can eliminate them from
Eqs. (9)-(10) when replacing by one from other critical quantities such as critical
temperature or zerotemperature energy gap. Note that Eqs. (9)—(10) are written
in a form which allows for easy study of one of the limiting cases, T = 0 or Δ = 0.
Therefore, putting T = 0 (Y = Δ(0)/Tc, τ ∞) in Eq. (9) and = 0 (X = 1,
τ = 0 and T Tc , hereafter Tc stands for a critical temperature) in Eq. (10) we
get

and

respectively where

must be a number in all possible cases and for BCS case Q = ln (π/2eC). Com-
paring Eqs. (12) and (13) we state that the obtained formula

is of BCS-type, hence Δ(0) must be proportional to Tc for all cases under discus-
sion. Employing relations among λ, ωD , Tc and a(0), as derived above, we can
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eliminate λ and ω D from Eqs. (9)—(10) and get two equivalent sets of parametric
gap equations which are of the form

or

where complementary quantities X and Y always can be found from relation
Y(τ) = 2 τX (τ). The obtained integral representations of the energy gap are
very convenient for numerical computing because of the strong convergence of
integrands. However, in order to derive their analytical form which is available in
the limit cases T → 0 (τ → ∞) and T → Tc (τ → 0), we have to transform them
employing the following integral relations:

and

Then Eqs. (15)-(16) reduce to the form

and

where we also employed Eqs. (13) and (14).

3. Application of the method for general BCS case

Let us illustrate the developed method for the general BCS case when the
function F is defined by Eq. (4).
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3.1. Numerical results

In order to obtain the numerical results we transform Eq. (16) to the form

Then

and

is a slowly varying function of its arguments. The quantities X and ω represent
additional fields and are functions of τ as given by

and

where h = μBH/∆( 0) and v = pFVs /∆(0) stand for reduced values of the magnetic
field and superflow, respectively. Since R(τ) is a slowly varying function of τ, in
order to derive the shape of the energy gap for the fixed magnetic field and super-
flow we apply self-consistent iteration methods. The exemplary results obtained
for a few chosen values of h and v are shown in Fig. 1.

3.2. Analytical results

Though there exist several equivalent methods of analytical research of the
energy gap in two opposite limits i.e. τ = 0 and τ = ∞, below we present a
method elaborated by us which seems to be comprehensive and quick. The form
of the energy gap in small τ limit (T→Tc ) can be found from Eq. (19) after series
expansion of integrands according to τ, H and Vs . Then after taking into account
the following relations (cf. [6]):



1012	 R. Gon czarek, M. Mulak



Parametric Equations for the Energy Gap ... 	 1013

from which we obtain the following formula:

where magnetic field and superflow must be sufficiently small quantities when
compared to ∆ .

The case of large τ should be investigated with the aid of Eq. (20). Since in
this case arguments of the function F are always large we can replace hyperbolic
tangent by exponential function according to the relation tanh ψ = 1- 2 exp(-ψ),
and then the integrands can be written down in the form

As the above integrand is strongly convergent at the point u = 0, it can be replaced
by the following expression:

Finally, after integration and simple algebra we obtain the following formula:

which reduces to the well-known form [7] if we put H and Vs equal to zero. In such a
way the fundamental results of BCS theory for the energy gap have been repeated
and generalized due to improvement and modification of analytical methods.

4. Non-BCs case

According to calculation given in [8] for the non-BCS system established
in [1, 2] the stucture of the gap equation coincides with Eq. (1) though the
function F becomes by far more complicated. However, employing the method
presented above we can easily derive the relation between zerotemperature energy
gap and critical temperature in accordance with Eq. (14). Appearing in Eq. (14),
the function Q is of the form

Therefore, Q = 0.517 and F∞ = 5/8. Hence, making use of Eq. (14) we find that for
the discussed non-BCS case the following relation is fulfilled:

which ensures ∆(0) [BCS] <∆ (0) on about 23 per cent.

7. Conclusions

The obtained results show that the pairing interaction parameter λ and
Debye frequency ωD can always be eliminated from equations by means of the
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critical temperature Tc or zerotemperature energy gap .6(0). Moreover, the ob-
tained results i.e. the parametric equations for the energy gap are equivalent in
both approaches. It causes that the relation Δ(0)/Tc must be constant and inde-
pendent of other parameters of theory, also in non BCS cases, though the constant
coefficient, which is a number, can be modified in some other approaches.

This research has been supported in part by grant 2 P302 125 06 of the State
Committee for Scientific Research (Republic of Poland).
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