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The effective relaxation times are calculated in the weak collision case for
the system of identical nuclear spins perturbed by double rotation, periodic
sequences of r.f. pulses and spin interactions.
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1. Introduction

The aim of this paper is to extend the calculation of the effective relaxation
times T1e and Te e for a system of identical nuclear spins in the presence of the
simultaneous perturbation by double rotation and periodic multi-pulse sequences.

In the previous papers [1-3] these two kinds of perturbations were consideoed
separately. The influence of different pulse sequences on the effective spin-spin
relaxation times was also presented in a series of papers [4-16].

2. General theory

Let us consider a system of identical nuclear spins Ii in a strong magnetic
field B 0 along z-axis, in the presence of double rotation around two axes z 1 , z2
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at the frequencies ω1, ω 2 and polar angles θ l = 54.7° and θ2 = 30.6°, respec-
tively [5-7], and periodic train of very short pulses

at resonance frequency ω0 = γB0, where θn,  and Φk are nutation and phase angles
of the pulses with repetition period of the cycle Tc = ΣNk=0 τk and cycle frequency

= 2π/Tc .
The relaxation time TQ for the expectation value (Q) of an arbitrary spin

operator Q in the weak collsion case (WCC) can be calculated from the rela-
tion [1-3]

where 7-1-(t) is a time dependent Hamiltonian in an interaction frame (interaction
representation).

In the presence of dipole-dipole interactions of like spins 1/2 or axially sym-
metrical quadrupole interactions of spins I = 1, the Hamiltonian in the laboratory
frame has the following form:

where bis a coupling constant and T2m,(1) and Y2 m,(θ, Φ) are second rank spherical
tensors and spherical functions, respectively.

All caleulations have been done in the way described in the previous pa-
pers [1-3]. Using transformation properties for spherical tensors and spherical
functions one gets the spin Hamiltonian in the interaction frame

where

Pk(t) are periodic square pulses with the width τk. Dmm'(Ωk) and d,,,.m, (β) are
Wigner rotation matrices and Wigner functions, respectively,with Ωk = (α, β,γ)
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(0, θ k , ω kt) for k = 1,2 and Ω'k = ( Φ - π/2 , βk, π/2 -Φ) in the case of r.f. pulses with
a fixed phase Φk = ^.

Using Eqs. (1-7) and commutation relations for Q = I z and .Ix = 1(./+ L)
one gets the following general expressions for the effective relaxation times in the
case of non-oriented (powder) samples:

where

3(ω) is the reduced spectral density of the correlation function in the presence of
molecular motion with correlation time τ c :

and 0M2 is the change of the second moment of the resonance line in the case of
motional narrowing.

In a special case of a train of identical, equidistant r.f. pulses along x-axis
with θk=θ= 2πP/N,Φk=0 and τk=2τ for k=1,..., -N one gets

The numerical simulations of the effective relaxation time Te e as a function
of the correlation time τc at different values of cycle frequency ω c , and rotation
frequencies ω 1 , ω 2 and θ = ź are presented in Figs. 1, 2 and 3 respectively, showing
minima of Te e at the region of ωcτc close to one.
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