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The effective relaxation times are calculated in the weak collision case for
the system of identical nuclear spins perturbed by double rotation, periodic
sequences of r.f. pulses and spin interactions.
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1. Introduction

The aim of this paper is to extend the calculation of the effective relaxation
times T1. and The for a system of identical nuclear spins in the presence of the
simultaneous perturbation by double rotation and periodic multi-pulse sequences.

In the previous papers [1-3] these two kinds of perturbations were considered
separately. The influence of different pulse sequences on the effective spin-spin
relaxation times was also presented in a series of papers [4-16].

2. General theory

Let us consider a system of identical nuclear spins I; in a strong magnetic
field By along z-axis, in the presence of double rotation around two axes 21,22
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at the frequencies wi, we and polar angles @; = 54.7° and @y = 30.6°, respec-
tively [6-7], and periodic train of very short pulses

(7/2)y — |70 = (O)a; — 11 = (O3)ey, — T2 — ... (ON)ar, — TN]n (1)

at resonance frequency wg = yBy, where O}, and @, are nutation and phase angles
of the pulses with repetition period of the cycle T, = Zivzo 7% and cycle frequency
we = 27/ T.

The relaxation time Tg for the expectation value (Q) of an arbitrary spin
operator @ in the weak collision case (WCC) can be calculated from the rela-
" tion [1-3]

1 SR AN A + )]t ar

T ~ 2Tr(QQ')
where 'ﬁ(t) is a time dependent Hamiltonian in an interaction frame (interaction
representation).

In the presence of dipole-dipole interactions of like spins 1/2 or axially sym-

metrical quadrupole interactions of spins I = 1, the Hamiltonian in the laboratory
frame has the following form:

, (2)

+2 :

H(t)=b Y Xn(t)T), (D), (3)
m=-—2

X (t) = b [Vom (O(1)B(t)) — (Vam (O(H)B(1)))], (4)

where b is a coupling constant and T (I) and Yo, (@, P) are second rank spherical
tensors and spherical functions, respectively.

All calculations have been done in the way described in the previous pa-
pers [1-3]. Using transformation properties for spherical tensors and spherical
functions one gets the spin Hamiltonian in the interaction frame

+2 :
ﬁ(t) =b Z mml(‘Ql) my M2(02) mm’( ( ))sz (t) 2m’(I) (5)
where
N-1
Dyt (2(t)) = Y Pe(t)Domms (24), (6)
Dmm!(2) = ’Dgzn,(a, B,7) = exp(—ima)dmm: (B) exp(—imy), (7
Py(t) = Z Ckn exp(+inwct), (8)

Py(t) are periodic square pulses with the width 7x. Dmm/(2x) and dpmm(B) are
Wigner rotation matrices and Wigner functions, respectively,with 2; = («, 8,7) =
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(0, O, wit) for k = 1,2 and 2} = (¢ 5Bk, 5 — P) in the case of r.f. pulses with
a fixed phase & = &.

Using Eqgs. (1-7) and commutation relations for @ = I, and I, = Ty +12)
one gets the following general expressions for the effective relaxation times in the
case of non-oriented (powder) samples:

1AM,
=5 2o (0085, (82) |Crm P (1) im,

mmymaom'n

X Tm, (Miw1 + maws — mwg — ch), (9)

1AM,

> 1 CRr 1P Ar + Cls O 1My + O O 001

The 12 ,
mmyimam'n
. X Tm, (Miw1 + maws — mwo — nw), (10)
where
Tr;m, = chnvmm'(gk)y (11)
% ,
/\m = 6 _— mz, . (12)
1

M = L/IFmEFmBEmELm), (13)

J(w) is the reduced spectral density of the correlation function in the presence of
molecular motion with correlation time 7:
TP A X ()Xt + 7)) 27,
Im(w :/ e i e“Tdr = ——= 14
U S () TP 1
and AM, is the change of the second moment of the resonance line in the case of

motional narrowing.
In a special case of a train of identical, equidistant r.f. pulses along z-axis

with @, = @ = 27P/N,P;, =0 and 7, = 27 for k= 1,...,—N one gets
_ 1 T _ionknN . _ 1
Chn = ——sin —-e , n#0; cko = g (15)

T s

The numerical simulations of the effective relaxation time T3, as a function
of the correlation time 7. at different values of cycle frequency wc, and rotation
frequencies wy,ws and © = 7 are presented in Figs. 1, 2 and 3 respectively, showing
minima of T at the region of w.. close to one.
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Fig. 1. T3. as a function of the correlation time 7¢ for wo = 90 MHz, w1 = 200 Hz,
w2 = 1.1 kHz and several values of w. (112 kHz, 102 kHz, 91 kHz, 75 kHz, 61 kHz
41 kHz, 29 kHz, 19 kHz, 11 kHz, 9 kHz, 7.1 kHz, 5.3 kHz, 2.3 kHz, 1 kHz).
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Fig. 2. Ti as a function of the correlation time . for wp = 90 MHz, w. = 11.6 kHz,

w2 = 3 kHz and several values of w; (23 Hz, 57 Hz, 95 Hz, 193 Hz, 313 Hz, 503 Hz,
675 kHz, 893 kHz, 1 kHz, 1.38 kHz).
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Fig. 3. T3, as a function of the correlation time 7 for wy = 90Mhz, w, = 11.6 kHz,
w1 = 200 Hz and several values of w, (812 Hz, 1.1 kHz, 1.7 kHz, 2.5 kHz, 3.1 kHz,

3.7 kHz, 4.3 kHz, 5.4 kHz, 6.1 kHz, 7.01 kHz).
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