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ON AHARONOV-BOHM EFFECT
IN MULTICONNECTED SUPERCONDUCTOR
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The system of co-axial cylinders: superconductor-ferromagnet— super-
conductor is considered. The temperature of the outer superconductor tran-
sition to the normal state, derived from the Ginzburg—Landau energy func-
tional, depends on the state of the inner one. The quantity of heat is evalu-
ated, which is liberated at the inner cylinder pushing out of core.

PACS numbers: 74.20.-z, 74.55.+h

1. Introduction

The phenomenon of a charged particle interaction with the field of magnetic
vector potential A(r), provided that the magnetic field

is zero in the whole particle localization region {P}, is known as the Aharonov-
Bohm effect. The AB-effect is the consequence of the main axiom of quantum me-
chanics, asserting the single-valuedness of the particle wave function Ψ(r) when r
rounds a closed curve in {P} [1]. Numerous experiments were realized during the
period 1960-1980 to reveal the AB-effect because of its big importance in physics
foundations understanding. In most of these experiments the electron microscopy
technique was used. Meanwhile, it has been already noted in [1] that superconduc-
tion are the objects in which the AB-effect leads to non-trivial consequences. In
fact, the effect was observed, when one placed a long narrow solenoid into the coil
of SQUID and varied the current Is through the solenoid. As the Josephson cur-
rent Ic of SQUID depends on the phase shift Δ0 between electron waves, passed
through the upper and the lower halves of coil and Δθ is determined by the vector
potential of solenoid, the increase in I s produces the periodical change of Ic (Is ),
although H = 0 for any Is [2]. One can abandon, in principle, current feed wires of
the coil and observe Ic oscillations, measuring its magnetic field Hind alterations.
Namely, it was shown in [3] that the sum of the coil flux Φi nd and the solenoid flux
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Φext must be equal to the integer number (n) of the flux quantum Φ0 = 20 Oe µm 2

in certain conditions. According to [3],

where μ = Rd/2λ 2 , R is the coil radius, d is its thickness, ) is the field penetration
depth into the superconductor. It is shown beneath that the small modification
of this system leads to some unexpected phenomena, which may be of interest for
the solid state physics.

2. Calculation section

Let the thin film of a ferromagnetic metal of thickness l be deposited onto
the inner surface of the hollow cylinder with the inner radius R and the thick-
ness d. The metal magnetic anisotropy will be considered as sufficiently high, so
that its magnetization M is always directed along cylinder's axis Oz. The segment
of cylinder |z| < L 2 /2 is made of the 1-type superconducting material (SC-2),
while other segments are dielectric (their role is to form the substrate for film).
Another superconductor (SC-1) having the form of taper with very small apex
angle γ may slide along Oz in the hole of the outer one (Fig. 1). The presence of

isolation is implied between the film and both superconduction and these isolation
are rather thin 30 Å) to disregard it afterwards. The lengths of magnet L and of
superconductors Li (i = 1 corresponds to the inner superconductor SC-1), comply
with the condition

so that the influence of magnet,s ends (the regions of magnetic field concentration)
may be ignored [4] and the AB-effect condition (1) is fulfilled for Cooper's pairs
in SC-2. It is evident, further, that the greater the quantity L 2 /R is, the smaller
is the relative contribution of the SC-2 ends areas to the overall energy. Therefore
if they approximate the taper as the cylinder with the average radius X along
SC-2, then the system geometry may be considered as a twodimensional one with
the polar coordinates p, O, where p = 0 corresponds to the common axis Oz of all
cyhnders. Let the critical field of SC-1 comply with the condition Hi (T) » H? (T).
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If SC-1 is in the normal state (its temperature may be maintained higher than T
of environment) and SC-2 is in the superconducting one, the latter holds some
current, creating a flux Φind inside it according to (2). When the SC-1 is cooled
to the environment temperature and it transforms into the superconducting state,
this flux will be ejected outside the SC-1 core. Doing so, one can evaluate the SC-1
energy in the context of London theory ([5], §15.5) as

where v is the velocity of superconducting electrons, rotating on the cylinder
periphery, and n s is its concentration. As in London,s theory

it may be calculated easily that

Analogously

for SC-2 at d < λ2. Taking d/λ 2 = 0.5 (see §3), one can obtain that when d» λ i ,
then W1 « W2. One can say that in such a situation the inside area 0 < p < X
does not contribute to the system energy. For the evaluation of this energy it is
necessary to pass from London theory to the theory of Ginzburg and Landau (GL)
([5], §17.1). According to [3] they introduce the wave function of the superconduct-
ing electrons in SC-2:

and besides, one can consider dn s /dp = 0 if d « 6, where 6 is the Cooper pair
diameter. The free energy of the system may be written in the form

where αn = α(T0 -T)/T0, α, b are the constants of a material, T0 is the temperature
of a one-connected specimen transition to the normal state at absence of IIext,  ^n

is the energy of normal electrons, H 0 is the magnetic induction inside the magnet:
H0 = 4πMez (H 0 = 0 outside it). It is a typical expression of the GL-theory. Only
the last summand deserves some comments. According to Ginzburg and Landau,
both F and Fn, comprise the energy of magnetic field in this (superconducting or
normal) state. This energy, by definition, is equal to work which must be expended
for the field creation. Thus the formula for (.p - TO includes the work A on
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the current field Hind creation at fixed (i.e. created already) magnet's field: A =
f (H2ind/8π)dV. The overall field in the pointp,ϕisH(p) = Hind + II0(p)and
the form of Eq. (8) becomes evident. The boundary conditions for this variational
problem on arguments A(p) and |Ψ| are as follows:

— see below the formula (13b).)

Varying Eq. (8) over A(p) and having regards to (a)-(d), one can obtain (ψ =
(b/α)1/2 = N1/2 < 1 is the unitless wave function of the SC electrons, E is the

Heaviside function)

The solution of this equation is

where Pi are still unknown constants, G(p) = P3I1(ψp/λ) + P4K1(ψp/λ) is the
linear combination of the modified Bessel functions [6]. Simple calculations show
that its Taylor power series in x = (R + d— p) near x = 0 may be approximated as

It follows from (11) that at d « R and 	 1 (but not at µ» 1!) one can confine
oneself to the first two items in it. Then the conditions (a) and (c) give

where z = H0 (2πRd)/Φ0 = Φext/Φ0 and

Integrating (8) by parts, inserting (9) into (8), and taking into account (10a)
and (13), one transforms the formulae forthe free energy F in reduced variables,
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minimized on A(p), to the following form (F = F4π/(Hc)2V, where V = 2πRdL2
is the SC-2 volume, Hc = α(4π/b)1 / 2 is the critical field of a massive specimen):

Here the parameter Q = ( ξ|z-n|/R)2,ξ= ħ/(4mα)1/2is the coherence length
(ξ(T) = λ(T/X, X is the known GL-parameter of a material, not depending on
temperature in the first approximation). It is evident that in the limits of this
approximation the product µQ. is a constant also: d(µQ)/dT = 0. One can consider
without losing physical generalty that µQ = 1. Let X = R - l at the beginning
and the SC-2 is heated from very low temperature. By virtue of (14) and (3), at
u ~ 1:

From this formula it results that on heating, the outer layer (SC-2) turns into
the normal state when Q = 1 (and consequently µ = 1) i.e. at the Little-Parks
temperature ([5], §15.5)

These function decreases at 0 < N < 0.62 and increases at 0.62 < N < 1 i.e.
the free energy minimum corresponds to the superconducting state. Thus, further
heating is necessary to transfer SC-2 to the normal state. With the increase in
temperature, the potential well depth of the function F(X = 0, N) decreases and
vanishes at some temperature T2. This temperature is defined by the solution of
system ([6]):

where N0 is the point of minimum of the function F(N) at T and X = const. The
implicit solution of (19) for X = 0 is

If µQ = 1, then µ(T2) = 0.89 < 1 and so, there exist the temperature interval
[T1 , T2] in which one can exert control over the layer SC-2 superconductivity,
changing the state of the area p < R - l. Such change may be realized by the SC-1
transformation along Oz, so that X = 0 at the beginning (Fa ) and X = R - 1
at the end of process (Fb). (The above mentioned variant with the SC-1 heating
and cooling seems to be more difficult to perform experimentally.) The isothermal
SC-1 movement is accompanied by the SC-2 heat absorption Q f from environment.
This process takes place not only at T1 ≤ T ≤ T2 , but also at T ≤ T1 , where,
however, such absorption does not lead to the SC-2 phase transition. The analysis
of formula (15) shows that the curve F(N) has only one minimum at T ≤ T1 ,
so the heat process is reversible inside this temperature interval, i.e. the SC-1
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movement in the opposite direction (out of the SC-2 hole to infinity) leads to the
heat liberation. If the taper velocity is low, the quantity N 0 (t) is determined by
minimum of the function F(N) with the time-dependent parameter X(t) at any
time moment t ([5], §19.6, formulae 19.47-48). Therefore, the quantity Qf may be
calculated using the usual formula of thermodynamics Q f = TΔS, where S is the
system entropy. By the entropy definition

where the symbol "=" signifies the free energy functional, minimized over N. For
the calculation of (21), one can use the formula of the microtheory of supercon-
ductivity ([5], §19.6):

which is correct at T - T0 «T0 . Then

At T = T1 they may take simple N0 (X = R — 1) = 0, N0 (X = 0) = 0.62, whence
it follows that

As it is seen, the quantity Q f (T1 ) has the same order as this heat which is taken
up by the volume V inside the massive superconductor, when the field Hc turns
on ([5], §15.2). The natural question arises how the quantity Q f depends on tem-
perature. One can calculate without difficulty that

On the other hand, Q f → 0 at T —> 0 by force of the Nernst theorem. It means that
there is an optimal temperature T, for the thermomechanical effect observation,
where Q f passes through maximum. However, it cannot be estimated in the context
of this work approximations. First, the assumption µ ~ 1, which was considered
above as true, loses its validity out of the sharp interval near T 1 , which complicates
the mathematics highly. Second, the GL-theory itself is applicable only near T 0 .
Therefore, the microtheory of superconductivity must be used for the T x and
(Q f ) max determination which demands a specific treatment.

3. Final remarks

To be specific, one can dwell on the following values of the parameters:
a) the material for SC-1 is Pb with λ 0 = 380 Å, Hc(T = 0) = 800 Oe,

T0 =7 K.
b) the material for SC-2 is Cd with λ0 = 1350 Å, Hc(0) = 30 Oe, T0 = 0.5 K

and X = 0.1 [7].
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Under this value of X, the equalities Q = 1 and µ = 1 may occur simultaneously if
z = 0.49 (consequently n = 0) and d/R = 0.08. The condition d «ξ 0 (ξ0 = λ0/X)
is fulfilled satisfactorily in this case. The magnitude R itself may be chosen so that
the temperatures T1 , T2 lie not far from the formal boundaries of the GL-theory
feasibility T0 - T « X 2 T0. By application of (22) it is easy to obtain that the value
R0 = 4.85 μm gives:

The decrease in z from 1/2 entails the T1 shift in the direction to T0 which spoils the
effect. As for the condition 1 C d, it will be always tue, because the monoatomic
layer of Ni placed onto the surface of cylinder of the radius R 0 creates flux z > 1/2
already. To fit the value z to 1/2 in that case, one can consider ferromagnet in the
form of tube with the longitudinal section.

By this means the AB-effect leads to the existence of peculiar thermomechan-
ical phenomena in the system given above. The physical sense of these phenomena
is rather simple: the exclusion of flux out of the tube core to its pre-surface region
leads to the increase in the electrical current density

and, consequently, in the SC-2 superconducting electrons kinetic energy. The tran-
sition to the normal state appeared to be favourable energetically. The Cooper
pairs breaking at T > 0 stimulates the system entropy increase, which is supplied
externally. The existence of such effect extends, in principle, the number of meth-
ods of the superconductor cooling apart from its magnetization in the field Hc.
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