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A one-dimensional model of particles with a displacive degree of freedom
for crystals possessing incommensurate phases which arise as a result of
the condensation of either real two-dimensional or complex one-dimensional
irreducible representations, has been proposed. For these representations all
invariants of the free energy expansion can be divided to four general forms.
For the active irreducible representations for which the invariants belong
to the first form a complete list of invariants is derived. In this case the
incommensurate modulation propagates along the symmetry axis and for
such crystals a proposed one-dimensional model may be a good approach
to describe the main features of the devil’s staircase curve. The particles
of the model interact with harmonic and anharmonic terms. The last ones
may contain an additional third order term provided a soft phonon branch
has a symmetry 7!. The calculated phase diagrams show sequences of the
incommensurate and commensurate one-dimensional phases. In the presence
of the third order anharmonic term the incommensurate phase proves to be
stable closer to the phase boundary to the normal phase.

PACS numbers: 64.70.Rh

1. Introduction

In recent years considerable attention, both theoretical and experimental, has
been drawn to the properties of incommensurate crystal phases. The occurrence
of transitions from a normal crystalline phase to a structure with an incommensu-
rate modulation has been observed in many different materials [1, 2]. The phase
transitions from the high-temperature normal phase to the low-temperature one
are often induced by the so-called soft modes. The model mechanism of them is
that one of the phonon branch “softens” with decreasing temperature. The wave
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vector of its minimum frequency describes the modulated degrees of freedom in
the low-temperature phase.

The great majority of structural phase transitions belong to the commensu-
rate-commensurate type. For these phase transitions the soft phonon frequency
has a minimum value characterized by a wave vector lying at a special point
of the Brillouin zone of the high-temperature phase. Then, the low-symmetry
phase, which arises as a result of such phase transitions, is commensurate and
is described by one of 230 three-dimensional crystallographic space groups. If,
however the minimum value of frequency is characterized by the wave vector which
is not localized at a high-symmetry point of the Brillouin zone of the normal
phase but is to be found at an arbitrary point, the low-temperature phase is an
incommensurate one. The symmetry of an incommensurate phase can be specified
by a crystallographic space group in a higher-dimensional space [3].

The Landau theory of phase transitions [4] supplies the method to derive
the symmetry changes which can take place at the continuous phase transition.
In order to predict all such phase transitions it is sufficient to consider irreducible
representations of space groups complying certain symmetry criteria. The essen-
tial aspects of various phenomena related to the normal-incommensurate and the
incommensurate-commensurate phase transitions can be also explained within the
framework of the phenomenological Landau theory of phase transitions [5-10]. The
Landau theory is symmetry-based and can account for the space group symme-
tries of the low-temperature phases. According to this theory it will be assumed
that the thermodynamic state of the crystal above, below and at the critical point
may be described by the free energy which depends on a set of thermodynamical
variables and components of the primary and secondary order parameter [11]. The
free energy is invariant under symmetry operations of the high-symmetry group
G,. This requirement concerning symmetry is fulfilled when writing the free en-
ergy in terms of the invariant polynomials of the order parameter components.
The low-symmetry phases are described by the minimum of the free energy with
respect to the order parameter components. The order parameter has a symmetry
of a given irreducible or physically irreducible representation of the space group
G,. The symmetry reduction from the space group G, to the incommensurate one
is driven by the active representation which usually is equal to one irreducible or
physically irreducible representation. This representation is characterized by the
wave vector k. which does not belong to a high-symmetry point of the Brillouin
zone and is incommensurate with reciprocal lattice vectors. For such incommensu-
rate phase the free energy has a minimum at the wave vector k.. The free energy
minima lie at several symmetry-equivalent points of the reciprocal space and are
related by symmetry operations of the high-temperature space group. The possible
modulated structures arise as a result of condensation of one, two or three pairs
of wave vectors, denoted as 1q, 2q or 3¢, respectively. Condensation of one pair
(ke, —kc) leads to one-dimensional modulation which propagates as a single static
wave along one direction determined by the wave vector k.. Condensation of two or
three pairs of non collinear wave vectors leads to the modulated structure given by
a superposition of several waves, 2q or 3¢ phase, respectively. The representations
constructed from each star (kc, —k.) are active two-dimensional representations.
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In our previous study of one-dimensional incommensurate phases [12] for such
active representations and for all space groups we have given a complete list of
invariants from which one constructs the free energy expansion. It can contain one
of four forms of invariants determined by the wave vector conservation law. In the
case when the free energy expansion contains only the first form of invariants, it
is possible to construct the one-dimensional displacive model with one degree of
freedom per unit cell. In others cases one has to increase the number of freedom
per unit cell or the lattice dimension.

Experimentally, the majority of phase transitions leading to incommensurate
structures are described by one-dimensional modulation (1¢). This is commonly
found in systems having orthorhombic symmetry in which as a rule the modulation
wave vector is parallel to a symmetry axis [1].

The any other type of theoretical treatments of incommensurate phases is
related to the semi-microscopic theories which take into account the discrete struc-
ture of the crystal. In particular we turn the attention to the discrete ¢* model
with a competing interaction [13], the Frenkel-Kontorova model [14] and the
ANNNI model [15]. Microscopic theories which take into account more realistic
interactions, have clarified the origin of an incommensurability in thiourea [16],
NaNO [17, 18].

In this article we have tabulated a complete list of all space groups, two-dim-
ensional active representations and invariants for which the free energy expansions
contain only the first form of invariants. For these cases it is possible to reduce the
number of degrees of freedom to one per unit cell. Further, we propose a displacive
one-dimensional model simulating such a phase transition in which the symmetry
reduction from a crystallographic high-symmetry group to a low-symmetry phase
of the crystal with 1¢ modulation is driven by an active two-dimensional irreducible
representations having one of the four general forms of invariants. The wave vector
which characterizes them does not belong to the high-symmetry points of the
Brillouin zone. To make the computer simulation enable we have assumed that
during the phase transition to the commensurate or incommensurate phases the
number of degrees of freedom can be reduced to one relevant, only. This degree of
freedom, which gives the largest contribution to the symmetry changes in a phase
transition, is described by the given active representation. Therefore, we can build
the one-dimensional model for the computer simulation from this degree of freedom
with the simple form of the potential energy. Performing computer calculations we
can search for the ground-state energy, configurations and the devil’s staircase
of the ground-state behaviour at zero temperature. Finally, we built the phase
diagram of our model containing modulated phases and low-index commensurate
phases.

The paper is organized as follows: In Sec. 2 we give two tables containing
invariants of the first general form of all real two-dimensional irreducible and physi-
cal representations characterized by the incommensurate wave vectors of the space
groups for triclinic, monoclinic, orthorhombic, tetragonal, trigonal and hexagonal
systems which condensation can produce phases with one-dimensional modula-
tion. In Sec. 3 we propose a displacive one-dimensional model and write the corre-
sponding potential energy. Analytical solutions of the model in terms of a simple
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cosine wave is derived in Sec. 4. In Sec. 5 we describe the method of finding the
ground-state energy and the ground-state configurations of particles at zero tem-
perature for a one-dimensional modulation. Section 6 reports the model phase
diagram. Final conclusions close the paper.’ '

2. Free energy expansion

In the phenomenological Landau theory of phase transitions the free energy
of the crystal is expanded into a power series of the order parameter components
and is invariant with respect to all symmetry elements of G,. To construct the
free energy expansion and to discuss the incommensurate phases one should find
invariants of the relevant order parameter components. The order parameter has
a symmetry of a given active irreducible representation T(ki) of G,. The wave
vector k does not belong to the high-symmetry point of the reciprocal space and
7 indices the ray representation [19].

When the incommensurate phase is described by the active two-dimensional
irreducible representation the modulation is one-dimensional and propagates along
one direction. Such an active irreducible representation is either real two-dimen-
sional one provided T(k4) is real, or it becomes a direct sum T(k4) @ T*(kid) of
T(*.3) and its conjugate representation T*(k'j), when T(K.9) is a complex one-dim-
ensional representation. We denote the basic functions of the active real representa-
tion by p; (k) and p; (k). For T(k) complex the basic functions of T(k:d) @ 7*(k.3)
representation are p;(k) and p;*(k). In this case p;*(k) = p;/(—k) and the indices
of irreducible representation j and j’ can be different.

From these basic functions one can construct the invariants using the pro-
Jection operator technique [20]. The analysis of invariants for all crystallographic
space groups and all real two-dimensional, complex one-dimensional irreducible
representations showed that there exists only four forms of invariants [12]. In this
paper we shall consider the first form of the invariants only. The n-th order invari-
ant of the first form reads '

It (k1, ks, ... kp) =

(1/2) [pj (k1) pj (Zk2) - - pj (£kn) + pj (Fh1)p; (Fk2) - - pj (Fkn)]

x6(+ky £ kot %k, — K), ‘ (1)
where K = l1b; 4 lyby + I3b3 is the reciprocal lattice vector with Iy, 15,13 to be
integers and b1, b, bs representing the basic reciprocal lattice vectors.

Using the invariants of Eq. (1) one can express the general form of the free
energy expansion in terms of basic functions of the active irreducible representation

F=(1/2)>" > Falky,kay. o, ka)pi(ki)o (k) .. pj (kn)
n=2k, ks, ko K ‘
X(S(:l:kl:i:kz:i:-"ﬂ:kn—K), (2)
where in a displacive system Fy(k, —k) is the square of the soft phonon frequency.

All the expansion coefficients F}, depend on the wave vectors, temperature, pres-
sure and have to be found from a microscopic model. In practice, the anharmonic
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coeflicients F3, Fy, . .. are usually kept constant. In a strictly incommensurate phase
no Umklapp terms (K # 0) are present. The Umklapp invariants can lower the
free energy and in some temperature range make the commensurate phase more
stable than the incommensurate one [6]. For any phase the summation over K is
limited to a few types of Umklapp invariants. The incommensurate phase is de-
scribed by the minimum of F' with respect to the basic functions and to the wave
vector k. This minimization condition allows one to establish the behaviour of the
first harmonic being the primary order parameter and all higher order harmonics
playing a role of secondary order parameters [5, 6].

In principle, the free energy expansion, Eq. (2), may contain even and odd
order terms (except the first order one). The symmetry of the active representation
requires very often that odd order terms vanish. We were considered this problem
in details. In Table I we show a complete list of these crystallographic space groups
and real two-dimensional irreducible representations, for which the free energy ex-
pansion written in terms of the basic function of these irreducible represehtations
has the general form given by Eq. (2). Similarly, the crystallographic space groups
for complex one-dimensional irreducible representations extended to two-dimen-
sional physical representations are listed in Table II. The tables contain the groups
ordered according to the crystal systems and Bravais lattices.

It proves that the free energy, Eq. (2), always has even order terms. But only

the free energy for the active irreducible representation T(km1) contains the odd
order terms as well. In Table I and II the notation of the irreducible representation
T(km.i) is abbreviated to km(j;n), where n = e or n = a if only even or any order
invariants are allowed. For a given irreducible star ky and ray representation j we
have used a symbol of an allowed invariant [12] as '

km(j;n) — 1(X,Y, Z | l1,15,1s). (3)
The index 1 denotes the first form of invariants from the set of four classes. The
X,Y,Z denote that the wave vector conservation law like in Eq. (1) contains the
product of §-functions for z, y and z components §(kiz + kaz + - - + knz — Kz) X
6(kiy + koy + -+ kny — Ky) x 8(k1s + b2z + -+ + knz — K,), respectively. If
one or two of X,Y, 7 indices are 0 then in the conservation law the one or two
§-functions, respectively should be omitted. Finally, the indices (1, l2,{3) indicate
the allowed multiplicity of the basic reciprocal vectors in the conservation law
and Iy,ls,l3 = 0,41,42,.... For many cases the allowed types of invariants are
the same for all the irreducible representations of the same irreducible star. To
simplify the tables in this case, we have abbreviated the notation to

km(n) — 1(X,Y,Z | 11,13,13) (4)
disregarding the index j, and having in mind that all j irreducible representations
of kg produce this invariant. The fact that all ray representations of a given
star km have the same even order invariants is indicated in the tables by km(e).
However, the complete analysis showed that often for the representation j = 1
even and odd order of invariants are permitted. This fact is explicitly stated in the
tables by writing a symbol km(1,a). The irreducible representations described by
the different irreducible stars ki, k2,..., but the same set of ray representations
i1, 72, .. are denoted by k1,2,...(j1,72,..-;€).
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TABLE I

Crystallographic space groups and invariants for real two-dimensional irreducible representations
which can produce one-dimensional incommensurate and commensurate modulations of 1g type.

Crystalline Bravais Space Irreducible Invariants
system lattice group representation
Triclinic Lir C; ko*(1,a) WX,Y,Z | l1,l2,13)
Monoclinic I C3, k1*(1,a), 1(X,Y,0]1,12,0),
k1*,2%(e)
k3(1,a), 1(0,0,Z | 0,0,13)
k3, 4%,5% 6% (e)
cz, k1*(1,a), k1*(e) 1(X,Y,0| l1,l2,0)
C, k3(1,a),k3 5*( ) 1(0,0,Z | 0,0,13)
Fvl-r,z Cgh kl*( ) ( ) 1(X’Y72 | 11112112)
k2*(1, a), k2*, 3% (e) 1(0,Y,Z | 0,1z, ~l2)
cs, k2*(1,a), k2*(e) 1(0,Y,Z | 0,1z, —I2)
Orthorhombic I, D}, D k7(1,a) 1(X,0,0|{,0,0)
k7,10%,11%,12%(e)
ks(1,a) 1(0,Y,0] 0,12,0)
k8,13*,14%,15%(e)
ko(1,a) 1(0,0,Z | 0,0,13)
k9,16%,17%,18*(e)
D3,D5p k7(1,a), k7,10%(e) 1(X,0,0 | {1,0,0)
! ks(1,a), ks, 13*(e) 1(0,Y,00,02,0)
D3, D310 ka(1,a), k9(e) 1(0,0,Z | 0,0,13)
DI, k8(1,a), k8(e) 1(0,Y,00,12,0)
S k7(1,a), k7(e) 1(X,0,01,0,0)
I} D3, D;[ 5202 k8(1,a), k8(e) 1(X,0,0 |11, -11,0)
k10(1,a), k10(e) 1(0,Y,0 | {1,11,0)
D§, D)% k6(1,a), k6, 7*(e) 1(0,0,Z | 0,0,13)
k8(1,a), k8,9%(e) 1(X,0,0} l;,—11,0)
k10(1, ), k10, 11*(e) 1(0,Y,0 | {1,11,0)
r DI,DZ k4(1,a), k4, 5%(e) 1(X,0,0]0,1s,12)
ks(1,a), k6, 7%(e) 1(0,Y,0 | 1,0,1;)
ks(1,a), k8,9%(e) 1(0,0,Z | l3,11,0)
Iy | DY?, D22 k7(1,a), k7(e) 1(X,0,0] —l1,11,4)
k8(1,a), k8(e) 1(0,Y,0 | l1,~11,11)
ko(1,a), k9(e) 1(0,0,Z | {1,11, 1)
Tetragonal Iy Si k13(1,a),
k13(e),14*(15e)
ci, k13(1,a),
k13(e),14%(1,3;e)
c3.,D? k13(1,a), k13(3;¢)
Dy k13(1,a), 1(0,0,Z]0,0,13)
k13(e),14%(1,2;¢)
D3/ k13(1,a), k13(2;€)
D} k13(1,a),
k13,14%(1,3;€)
D2,D5>7 k13(1,a), k13(e)
D} k13(1, ), k13, 14%(e)

4h
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TABLE I (cont.)
Tetragonal F;’ (a) S2 k10(1,a)
C;;)h'Dg klO(l,a),klO(B;e) 1(0»07Z | ll!llr_ll)
D1l k10(1,a), k10(2;¢)
D;]T® k10(1,a), k10(2,3, 4;¢)
Trigonal I 52, Dg,ng k6(1,a) 1(0,0,Z | 1,11,11)
DS, k6(1,a), k6(2;¢)
Hexagonal | I, st,ci,.D3* k11(1,2)
Dy, D3t k11(1,a), k11(25¢) 1(0,0,Z ] 0,0,13)
Ct, D} k11(1,a), k11(4;e)
D}, k11(1,a), k11(2,3,4;5¢)
TABLE II

Crystallographic space groups and invariants for real two-dimensional physical representations
which can produce one-dimensional incommensurate and commensurate modulations of 1¢q type.
These representations have been generated from the complex one-dimensional irreducible repre-

sentations.
Crystalline Bravais Space Irreducible Invariants
system lattice group representation
Triclinic Lir cl k0*(1,a) 1X,Y,Z | l1,l2,13)
Monoclinic I cl k1*(1,a), k1*, 2*(e) 1(X,Y,0| l1,12,0)
c3 k3(1,2), k3, 4%, 5%, 6*(e) 1(0,0,Z | 0,0,13)
rb c3 k1*(1,a) 1(X,Y,0{11,12,12)
c3 k2*(1,a), k2*,3*(e) 1(0,0,Z | 0,13, —l3)
Orthorhombic FAR ci, k9(1,a), k9, 16%,17%, 18%(e)
ct, k9(1,a), k9, 18%(e) 1(0,0,Z | 0,0,13)
cs, ko(1,a)
Ib cil k6(1,a), k6, 7*(e) 1(0,0,7 | 0,0,13)
Ccoo1® k3(1,a), k8, 9%(e) 1(X,0,0 | l3,—11,0)
cyotT ks(1,a)
] cis k8(1,a), k8, 9%(e) 1(0,0,7Z | 11,11,0)
Iy [ k9(1,a) 1(0,0,Z | l1,11,-11)
Tetragonal Iy c k13(1,a), k13(e), 14%(1, 3;¢)
ct, k13(1,a), k13(e), 14%(e) 1(0,0,7 | 0,0,13)
cz, k13(1,a)
I'y(a) c3 k10(1,a), k10(3;5€) 1(0,0,Z | 11,11, —11)
el k10(1,2)
Trigonal I ct k6(1,a) 1(0,0,Z | l1,11,11)
c3, k6(1,a), k6(2;e)
Hexagonal Iy C’;,O;f,c’év k11(1,a) 1(0,0,Z | 0,0,13)
c} k11(1,a), k11(4;e)
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Inspection of Table I and II shows that the one-dimensional modulation
propagates usually along the high-symmetry lattice direction. The fact that the
modulation wave vector k. propagates not along a high-symmetry direction, al-
though being parallel to the unique symmetry plane, is indicated in Tables I and
IT by the star (%) put after the active representation symbol.

3. The model

Tables I and II indicate what symmetry of order parameter produces the
incommensurate and commensurate modulations of 1q type. However, the mag-
nitude of the wave vector of the modulation is not specified by the symmetry
requirements. On the other hand, one knows that the temperature behaviour of
the modulation wave vector shows plateaux which correspond to the regions of
stability of commensurate phases. Such a behaviour carries on the name of the
devil’s staircase curve. In this section we are going to sketch the devil’s staircase
curves for two general cases for the free energy expansion containing the even
order terms only and the free energy with even and odd order terms. We apply
for this such a simple microscopic displacive model with one degree of freedom
per unit cell, whose free energy corresponds to the form of Eq. (2). We are aware
that this approach is a simplification to the real crystals, since 1t accepts a con-
siderable reduction of the number of degrees of freedom. Nevertheless, we expect
that in each case the main features of the devil’s staircase curves will be correctly
reflected. A reduction of a realistic model to a model with one degree of freedom
per unit cell can be performed for the crystal with modulation propagating along
the high-symmetry directions only. In such a case the interaction range of the har-
monic potential can be limited to a few neighbours. Indeed, in this case the crystal
planes can be projected on the selected high-symmetry direction and the projected
sites still form a one-dimensional chain with the same lattice constant. That situa-
tion occurs for these irreducible representations listed in Tables I and II which are
not labelled by the star. In contrary, for cases labelled by the star any projection of
the crystal sites on the non-high-symmetry direction, moreover, a direction with
incommensurate inclination with respect to the basic lattice vectors, will result in
dense coverage of the sites on the projected line. That excludes the possibility to
approximate the incommensurate phase of a crystal by a one-dimensional chain
and forces to treat these cases by taking into account a considerable number of
degrees of freedom of the unit cell. Therefore, in what follows we consider fur-
ther only a model appropriate for the irreducible representations not labelled by
a star. We assume that in each of these cases the crystal lattice can be projected
to a one-dimensional chain with one degree of freedom per unit cell and with an
effective interacting potential.

Assume that a particle of the model has a displacive degree of freedom u(n),
where n denotes the index of a crystal site. Here, the displacement plays a role of a
local order parameter. We assume further that each particle is placed in the local
anharmonic potential and interacts with the first and second nearest neighbours
via harmonic forces only. For simplicity the expansion up to the forth order term
1s considered for the local anharmonic potential. Then, the potential energy is
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represented by
V= 5 Z{A(n n) + H@®(n) + Gut(n)
+ Z () [i(n + m) + i(n — m)]}. (5)

It is a function of parameters E, I;T, G and 177(,%) The Fourier transform for the
particle displacements reads

i(n) =Y Qpexp(~2rikR(n)), (6)
k

where R(n) denotes the position vector of particle n. Rewriting Eq. (5) for the
potential energy in Fourier space, one finds

4 > wi(k)Qp, Qp, 8k + ka2 — K)
k1,k2,K .
+H Y Qp Q@ (ks + ky + b — K)
klykz,ks,K
+G Y Qp,Qk,Qu,Qp, 8k + kst ks + by — K) | (7)
ki ko ks k., K

Reducing the potential energy expansion to the soft mode one arrives formally to
the expansion analogous to the free energy expansion, Eq. (2). However, the third
order anharmonic terms H of Eq. (7) do not vanish only if the requirements set
in Tables I and II are fulfilled. The dispersive curve is

wi(k) = A+ 2V cos(2mkR(m)), (8)

where we have used the relation 177(,%) = ‘7—(27)n It should have a minimum around
the incommensurate modulation wave vector. To achieve that, the interaction at
least to the second nearest neighbours should be taken into account. Renormal-
izing further the displacement u(n), the potential parameters Av, 177(,23) ,f[ , G and
potential energy V [21] we arrive to the following simple potential energy form

1
V = 5 Z [AU‘721 + Bun(un-}-nc + un__no)

n

+un(un+2ng + un—Zno) + Hu3 -+ u4] (9)
and dispersion curve '
w?(k) = A+ 2B cos(2mk) + 2 cos(4rk), ' (10)

where k is the wave vector number along the chain. The positions of the first and
second nearest neighbour particles are denoted by the index n £ ngy and n 4 2ng
of crystal sites, respectively. The phase space of the model specified by Egs. (9)
and (10) is spaned by three parameters A, B and H. In this space the normal,
commensurate and incommensurate phases will occur.

\
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4. Analytical results

In this section we present some simple analytical solutions. The dispersion
curve, Eq. (10), represents a single phonon branch with non-zero frequency at the
Brillouin zone centre. When w?(km), Eq. (10), is negative at a minimum at km,
the incommensurate phase with a wave vector kn, appears. However, we assume,
that the form of the incommensurate modulation is sinusoidal. Then, the only
non-zero amplitude 7y is that of the normal modes Qi,, and Q.. which belong
to the opposite wave vectors (km, —km). Leaving only the leading terms in the
expansion, Eq. (9), the potential energy of the 1¢ incommensurate phase in the
approximation of a single harmonic becomes

View = w?(km)n}, + 30k, (11)

The amplitude of the ground-state energy specified by the extremum condition
leads to

m = —cw(km) (12)

‘min 1,
Vim™) = =159 (km)- (13)

The normal phase is defined by |Qy,,|= 0 and hence, its potential energy, Eq. (9),
is V,gmi“) = 0. The phase boundary between the normal and 1q incommensurate
phases is defined by the relation V™) = V,c(:in) = 0. Using Eq. (13) one obtains
that the stability of the normal phase is lost when w?(km) = 0 and the minimum of
the dispersion curve is located at ky,. So, the relation between the incommensurate
wave vector of the modulation and the B parameter reads

B = —4cos(2mkm). ' (14)

Hence, B lies within the range —4 < B < 4. From Egs. (10) and (14) one finds
that the value of w?(k) at the minimum equals to

02 (k) = A — %BQ ~2, (15)

The condition w?(kmy,) = 0 gives the equation A = (1/4)B? + 2 for the phase
boundary between the normal and 1¢ incommensurate phases.

5. Method of numerical solutions

The ground-state energy and the ground-state configuration of particles for
1¢ modulation were found numerically using the gradient method [22]. The incom-
mensurate or commensurate phases are determined in the parameter space of A, B
and H by minimizing the potential energy, Eq. (9). Our simulated chain consists of
M unit cells and particles. The periodic boundary conditions were used. So, along
the modulation direction it was possible to adjust the modulation waves which
correspond to the commensurate phases with & = (N/M), where N is integer
and N < M. In the numerical calculations we started from initial configurations
of particle displacements in the form of a simple cosine wave, characterized by a
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commensurate wave vector k = (N/M). Next, calculating the force acting on each
particle the particle position was readjusted. The procedure was repeated till the
potential energy had the minimum for a given wave vector k. This minimization
procedure was performed for a set of {(N/M) = m/(m + 2n)} wave vectors with
n=2012...,14and m = 0,1,2,...,7. Although it yields only commensurate
phases we consider k. = 0/1,1/2,1/3,1/4,1/5 and 2/5, as commensurate if it is
stable in a sufficiently wide interval, and other higher-order commensurate phases
as incommensurate.

6. Phase diagram

Here, the numerical results of the phase diagram of the model potential en-
ergy, Eq. (9), for various values of the parameters A, B, H and zero temperature
are presented. Figure 1 and Fig. 2 show two sections for H = 0 and H = —1.0,
respectively. In the H = 0 case the third order invariant of the order parame-
ter vanishes by symmetry requirements. The phase diagram contains regions of
the commensurate lock-in 0/1,1/2,1/3,1/4,1/5,2/5 and the incommensurate I
phases. The modulated phases appear only in a small part of (A, B, H) space. The
whole (A, B, H) space is divided into three main regions confined by two planes:
B = —4, B = 4 and the surface A = (1/4)B? + 2, Eq. (15). The normal phase N
exists only in a part of the parameter space confined by plains: B = —4 B = 4
and A > (1/4)B? + 2. The modulated phases exist within: B = —4, B = 4 and
A < (1/4)B? + 2. Outside these two regions, B < —4 and B > 4, the normal or
simple commensurate phases appear, only.

10 T T T T T T T

Fig. 1. Phase diagram of the model for H = 0. N and I denote normal and incommen-
surate phases, respectively.
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10 T Y 1 T T Y T

-15 1 ) |
-4 -3 2 A 0 1 2 3 B 4

Fig. 2. Phase diagram of the model for # = —1.0. N and I denote normal and incom-
mensurate phases, respectively.

The commensurate phases cover a large area of the phase diagram. Close to
the phase boundary to the normal phase one can see regions of incommensurate
phases existing between commensurate ones. At H = 0 one finds incommensurate
and commensurate phases with wave vectors 0/1,1/5,1/4,1/3,1/2. At H < 0 the
phase boundaries change the slope and consequently the regions of stability of
incommensurate regions increase in expense of incommensurate phases. Figures 1
and 2 show that commensurate phases are more stable than the others. This is
because, for the commensurate wave vector k. the free energy expansion, Eq. (7),
contains also the Umklapp invariants (K # 0) which lower the free energy ad-
ditionally. The commensurate 1/2 and 1/4 phases are stabilised by the second-,
and fourth-order invariants. At H = 0, the lock-in phases, 1/3,1/5,2/5, appear as
a result of Umklapp invariants which couple higher-order modulation harmonics.
The couplings are given by allowed invariants and they need that the relevant
higher order harmonics already exist. The strength of these phases depend on the
amplitudes of apparent higher-order harmonics and become non-zero only if they
do not vanish. At H = —1.0 the free energy, Eq. (7), has the third-order invariant
additionally. This invariant couples three modes with the wave vectors k. = 1/3,
stabilizing the free energy for the commensurate phase 1/3.

7. Final remarks

We have shown that the incommensurate modulation propagates in one di-
rection of a crystal if the wave vector of the order parameter belongs to a real
two-dimensional or to a complex one-dimensional irreducible star. Qur earlier cal-
culation has shown that in this case there are only four general forms of invariants.
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In this paper we consider only the first form of the invariants. All symmetry reduc-
tion cases for crystallographic space groups are collected in Tables I and II. The
tables show that the free energy expansion is represented by two types of power
series: with all or only even order invariants. Moreover, the odd order invariants
are present only if the phase transition to the incommensurate phase is induced
by the soft mode of 7! symmetry.

To estimate the stability regions of commensurate and incommensurate phases
a simple one-dimensional displacive model has been proposed. Its phase diagram,
which has been found numerically, displays sequences of modulated and lock-in
phases. The model contains a number of simplifications made to reduce the com-
plexity of a real system. Thus, the number of particles and degrees of freedom of
a real system is reduced to one particle per unit cell and to one essential degree
of freedom. This degree of freedom enters the two-dimensional active irreducible
representation which is responsible for the formation of the incommensurate mod-
ulation. Since, a realistic model of a crystal requires interactions between larger
numbers of particles per unit cell, the larger number of neighbours should be taken
into account. Consequently, the phase diagram boundaries might be shifted and
the stability width of the commensurate phases might change. This, however, will
not change the general scope of commensurate phases appearing in the phase dia-
gram. We have considered the ground-state energy and particles configurations at
zero temperature. At finite temperature, the configurations and phase diagrams
will be modified because of the renormalization of potential parameters. The sta-
bility width of the commensurate phase will then diminish. The renormalization
of the parameters will involve many degrees of freedom including those not con-
sidered explicitly in our model. In spite of these, the calculated phase diagram
qualitatively describes many features of incommensurate systems.
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