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We reconsider the Pfitzner and Wolfle results concerning the quasi-par-
ticle scattering amplitude in Fermi liquid and adopt them to the sufficiently
low-temperature and flat-confined systems, where solely two types of quasi-
-particle interactions are permitted. We find relations between the pairing in-
teraction and Landau parameters and establish plain criteria for the creation
of singlet or triplet Cooper pairs. Moreover, we present methods allowing us
to estimate values of interaction parameters and transition temperatures in
flat-confined systems basing on their bulk parameters. The obtained results
are in agreement with experimental data for helium-3 and its films and ex-
plain an absence of superconductivity in alkali metals.

PACS numbers: 67.50.Fi

1. Introduction

In all investigations of superfluid and superconducting Fermi liquids one
always considers two types of quasi-particle interactions, i.e., the Fermi liquid
interaction and the pairing interaction. These interactions are treated a priori
independently, and parameters of their series expansions in Legendre polynomi-
als are found from experiments for the Fermi liquid interaction (so-called Landau
parameters), or postulated with reference to experimental data for the pairing
interaction. Such treatment of a problem, though it is very convenient, it is not
entirely correct. Pfitzner and Wolfle [1], considering the quasi-particle scattering
amplitude from a semi-microscopic model by analytically solving a generalization
of Landau’s integral equation to momentum transfer up to 2pr, showed that there
exist general relations between the spin-independent parts of scattering ampli-
tude separated with regard to singlet and triplet components or spin-direct and
spin-exchange parts, respectively. However, the mathematical formalism used in
such general problem was very involved and complicated, therefore the obtained
results could not find a simple application.
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The purpose of this paper is to find the plain relations between the pair-
ing interaction and Landau parameters and explain the problem of cut-off energy,
which makes prospects to estimate the superfluid or superconducting properties
of a system in virtue of its behaviour in a normal phase. Though the similar ef-
forts were performed in [2-4] the results obtained there were not precise enough
to find a direct application. The formalism used herein was improved by Pfitzner
and Wolfle [1], therefore the results obtained by us are more consistent and con-
vincing, and they reveal better agreement with experimental data [5]. Moreover,
the achieved clarification and simplifications allow us to expand this problem for
flat-confined systems and exam the appearing effects connected with reduced di-
mension [6].

2. Flat-confined Fermi systems

In order to consider the above problem in case of flat-confined systems we
employ the formalism given in [6], where we established the fractal dimension d
where 2 < d < 3 for a reverse (momentum) space of such systems and developed
analytical methods to research them. In outline, the problem can be presented as
follows. We assume that the slab is set parallel to the zy-plane and the walls are
located at a distance L. The separation L can vary from the distance of the order
py’ (pr is the Fermi momentum in the 3-dimensional space, cf. [6]) to infinity. It
causes that the momentum space is discrete in p, direction and equals p, = 7n/L,
where n is an integer [6-9]. The Fermi surface in such space can be constructed as
the result of intersection of the discrete space and the Fermii sphere and constitutes
the set of concentric circles collocated on the sphere [10-12]. For the specified
structure the averaging over the Fermi sphere is of the form [6-9]:

27 N-1
de 1

ced = — ey 1

) 1)
where No = pgL/m and N = [Ng]+1 ([Ny] is the nearest integer smaller than Ny).
We also apply the notation Ny = N — §, then f increases from 0to 1 (0 < < 1)
when L lessens in the suitable range [6]. Moreover, we can define relationship
between the dimension d and distance L, and for large L we get

d=3-¢ (2)
where € = 37 /4psL and € € 1.

3. Connections amongst system parameters

In any superfluid (superconducting) Fermi systems we can specify three
groups of parameters which describe the quasi-particle interactions i.e. Fermi lig-
uid interaction, scattering amplitude and pairing interaction. These interactions
after multiplying them by a density of states on the Fermi surface become dimen-
sionless quantities. If we separate their spin components they can be written in
the following form which is valid for the confined system, too.
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Fermi liquid interaction:

Fo=F;(p-9)o° 0"+ F3(3-7) o o,

Scattering amplitude:

Ra=Ry(5-7) 0" o+ RI(G-7) oo,

Pairing interaction:

Pa=r3(-7) (0% (%) + I3 (3 ) (i0%0) - (o'0%), (3)
where o are the Pauli matrices (¢° is a unit matrix) and p, p’ define momentum
directions of incoming and outgoing quasi-particles in case of the pairing interac-
tion or two incoming quasi-particles in other cases, respectively. It is well known
that the scattering amplitude and Fermi liquid interaction are entirely equivalent.
Moreover, we show below that the pairing interaction is not independent of them.

In general case, when the system size is confined and the momentum space

is not isotropic, the system can distinguish just one direction z and each scalar
function of discussed interactions can be independently expressed as (cf. [6])

A AI) = 47[-2 2] +1 mZ;] XJm Y* ”(pI)Y]’m(gm ®), 4)

where Yjn, are spherlcal functlons, 0, = arccos(n/Ng) and X;_m(d) = X;m(d).
This expression in the limiting cases d = 3 or d = 2 reduces to

X3 (p-7) ZXPAA' (5)

where X;n,(d) = XJ for all m, |m| < j and P;j(z) are the Legendre polynomials,
and,

X2 (3 %) =x0+ > mcosm(p—¢), (6)
m=1

respectively, where p - p' = cos (¢ — ¢) since we put n = 0. Here
[e ]
1
Xm = J;n ijm(Q)J}m, (7

and (cf. [6])

2 (552)! (L*;— ! ’

In order to standardize parameters of the interactions under consideration
we use the following conventional symbols in three-dimensional case. The Fermi
liquid interaction parameters, the so-called Landau parameters, have the form

FS »a
58 — 9

a] 2] + 1 ( )
and satisfy the relation —1 < a;’a < 00. The scattering amplitude parameters have
the form

rs.’a = J , (10)

im
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and satisfy the relation —oo < r’* < 1. Moreover, the above parameters are not
independent and fulfil the relation [13]

(37 =@ =1 (11
The pairing interaction parameters have the form
r®
Ul — S 12

and g;’a = 0 for all even, odd j, respectively, according to the Pauli exclusion prin-
ciple. The pairing state (Cooper pairs) can appear only if there exists at least one
positive g;’a parameter. We do not discard the negative-value pairing parameters
g;"a since the existence of them allows us to exclude any coupled states and sec-
ondary effects connected with additional coupling constants. Note that the above
defined pairing interaction constitutes the generalization of the standard form
where it is assumed that the pairing interaction as a function of energy is constant
till cut-off energy €, and zero above it. However, the pairing interaction defined
in such a way contains only positive definite parameters which can be performed
in the form [14, 15]

~1
sa 2e

where the parameters Dj-’a denote values of the pairing energy per quasi-partic-
le in states with the fixed quantum number j, therefore DJS-’a = 0 for all even,
odd j, respectively, and the dominating one can be identified with the ground
state energy gap A. Though g]S.’a can depend logarithmically on the cut-off energy
€p which valueis not determined univocally for Fermi liquids, and as long as in final
results g]S-’a appear only as independent of €,, we are fully justified in using them as
some physical parameters. On the other hand, the cut-off energy can have physical
meaning and e.g. for superconductors it is identified with the Debye energy. Then
the above comment is superfluous. Note that the parameters a3®, r3* and g;*
tend to zero if j tends to infinity. This statement together with experimental
data permits to reduce the number of parameters which are of physical relevance.
Let us consider now the relations between the scattering amplitude and pairing
interaction parameters in a few most important cases.

4. Plain relations in three-dimensional case

Considering a real d = 3 Fermi liquid system, where the total rotational
symmetry is imposed, we should restrict ourselves to sufficiently low tempera-
tures and assume that the energy and momentum of Landau quasi-particles can
be taken from the Fermi sphere or its immediate vicinity. It causes that quasi-par-
ticle collisions can be realized in two characteristic forms which are equivalent to
the physical scattering amplitude on the Fermi sphere and the pairing interaction,
respectively [16]. Since these two types of interactions constitute the limiting cases
of the general form of the scattering amplitude considered in [1], we have the right
to compare them when they describe identical collisions. This takes place only
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when two quasi-particles with opposite momenta scatter to the same state. How-
ever, such approach is only simplification of the problem when we neglect feedback
effects between the above interactions (cf. [2-4]). Fortunately, the feedback effects
depend on the cut-off energy and they have to disappear for one specific value
of €, owing to analytical properties of the pairing interaction. Therefore we also
have the right to ignore them and fix ¢, if the value of the cut-off energy does not
influence final results. Then, after some algebra we get the following relations:

Z(—l)j(2j+ 1) (ri+7r2) = —4§:(2j+ 1)gs, (14)

j=0 j=0
D (17254 1) (5 —3r8) = —4> (2 +1)g2, (15)
i=0 j=0

which after regarding Eq. (11) allow us to consider g;’a as functions of Landau
parameters.

Let us verify now the formulas (14) and (15) in relation to helium-3. We
assume that solely ¢§ and g5 do not vanish and we take into account just those
Landau parameters which are experimentally available in an unshakeable manner,
l.e. a3, a@ and a5. They are functions of pressure and their values are given in
Ref. [5]. Though the parameters g§ and g} depend on €, they can be estimated
numerically according to imposed conditions. However, the obtained results can
only be used to identify a sign of the parameters and to observe their dependence
on pressure.

In Fig. 1, we present the forms of g5 and g3 as functions of pressure. Note that
the pairing parameters fulfil the inequalities 0.26 < g5 < 0.36 and
—1.74 < g3 < —1.26, which prove that there can appear only triplet Cooper
pairs.
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Fig. 1. The presumed forms of the pairing parameters gi and g§ in helium-3 as functions
of pressure for a fixed value of €, defined by means of Landau parameters [5]. Note that
only g5 is positive (0.26 < g§ < 0.36) and determines a pairing state whereas g is always
negative (—1.26 > g& > —1.74) and cannot reveal its existence in any physical effects.
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The most spectacular achievement and advantage of the present formal-
ism is connected with the expression of the critical temperature 7, as a func-
tion of pressure by means of the Landau parameters. Taking into account the
well-known formula defining transition temperatures in BCS-like systems i.e. T; =
const exp(—1/g%), we can transform it to the form

1 1

TeP) = Te(Po) b | = oy + ey (16)
which becomes independent of cut-off energy. Py is an arbitrary value of pressure
for which T¢(Pp) has to be taken from experiment. After employing Eq. (14) we
find the critical temperature as a function of pressure. The shape of a resulting
curve coincides with experimental data and is independent of ¢, which ensures that
the used formalism is gauge invariant. Moreover, the curve can be fitted precisely
by means of suitable choice of the data, as demonstrated in Fig. 2.
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Fig. 2. The phase transition diagram for superfluid helium-3 derived by means of the
formula Tc(P) = Tc(0) exp[—1/g5 (P) +1/95(0)]. For P =0, 3, 6,...33 and 34.36 bar we
have got the following results: 7. = 0.92, 1.36, 1.61, 1.87, 2.03, 2.20, 2.36, 2.40, 2.49,
2.53, 2.56, 2.66 and 2.61 mXK (cf. [5]).

Since the Fermi surface is almost spherical in alkali metals, the Fermi liquid
approach can be applied in this case and the Landau parameters can be sensibly
defined. However, now the scattering amplitude must be modified in relation to
neutral Fermi liquid because of existence of the long-range part of the quasi-partic-
le interaction connected with the Coulomb interaction of electrons. Fortunately,
the influence of this interaction, according to [13], can be compensated by putting
rs = 1. Note that though the parameters g;‘a are probably also modified, they
still remain arbitrary and default quantities. In such situation, when applying the
developed formalism, we can consider the possibility of creation of superconducting
states only with respect to the Landau parameter a§ and a3. These parameters are
immediately connected with the effective mass (heat capacity) and Fermi liquid
spin susceptibility, hence they can be easily evaluated in normal phase. In Fig. 3
we define the regions on ajaj-plane in which the parameters g} and g3 have a
fixed sign. Note that there exists a region where the superconductivity (singlet
and triplet) cannot be realized at all. The above results allow us to state that
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Fig. 3. The regions of a fixed sign of the pairing parameters g5 and g3 on a3a$ Landau
parameter plane derived for alkali metals. The points (+) and (o) display the values
of Landau parameters for K and Na, respectively [13]. Note that both points lie in the
region of negative values of the pairing parameters.

according to data given in Ref. [13] the alkali metals potassium (K) and sodium
(Na) can never become superconductors.

5. Plain relations in two-dimensional case

In the two-dimensional case (a monolayer system, L < 7/ps and d = 2) we
have to restrict ourselves to one Fermi circle (N = 1), only (cf. [6]). Now, the Fermi
liquid interaction, scattering amplitude and pairing interaction can be extended in
Fourier series, because of full rotational symmetry in a plane. Hence, the relations
(14) and (15) appear now in the form

(P +08) + 2 (=1 (o5 +p2) =8>, (17)
j:O ]

(6§ —308) + 2D _(=1) (p5 — 3p2) = —49% — 8271, | - (18)
j:O

S

where the coefficients pS #, v5% and also aJ’ are two-dimensional homologues ofr
S5,a

g;" and a;-’ , respectlvely, and they are defined according to Eq. (6). Moreover
the Fermi liquid interaction and scattering amplitude parameters fulfil the relatlon

(cf. Eq. (11))
(™)™ = (™)™t =1, (19)

where —co < p* < 1 and —1 < a}® < co. Now, again the pairing interaction pa-
rameters 'y]S-’a = 0 for all even, odd j, respectively, according to the Pauli exclusion
principle. Therefore, superfluid or superconducting properties of a two-dimensional
system can be estimated by means of two-dimensional equivalents of the Landau
parameters (cf. Eq. (7)), modifications of which should be determined 1ndepen—‘
dently.



936 R. Gonczarek, M. Mulak

6. Plain relations in reduced dimension case

In general case of confined systems (2 < d < 3) the problem becomes strongly
complicated because of a great number of parameters X;n,(d) and the lack of in-
formation about them. However, if we restrict ourselves to weak-confined systems
only,i.e., when ¢ = 3w/4p3L <« 1, we can find relations between parameters of scat-
tering amplitude and Fermi liquid interaction and establish the Pomeranchuk-type
stability conditions in standard manner (cf. {6]). The obtained relations have the
following form:

2
PR3- ) = al2(3—¢) — a3E(3 —e) (1 + §6ij> P2 (3 - e), (20)
PEB3—e) <1- ge:rjm,
2
a;m(3—¢€) > - <1 - §6ij) , (21)

where the above parameters are defined according to prescription given in
Egs. (9)-(10). Let us represent them in the following form:

7";':1(3 —€)= r;,a (1- es;’;) ,

a8 ) = a1 -ebi), (22)
where 53, and b3 are defined for € = 0. From Eq. (20) after employing Eq. (11)
and Eq. (22) we obtain the following equation:

S5,a s,a
sy bj’m_Q

im _Jm 2y (23)
5,8 5,4 Jmo
T ; 3
which allows us to state that the following solution:
s 2 '
Sim = bjm = 3Tim (24)

fulfils Eq. (20) for all values of r}* or a}* and satisfies the Pomeranchuk-type sta-
bility conditions. Note that the above solution is equivalent to the statement that
the quasi-particle interaction is proportional to fractal volume of the momentum
space.

Considering our results with respect to superfluid helium-3 we ascertain that
the pairing interaction parameter has to be modified according to the same rules
as the rest and we get

911 =9i1=91(1-¢),

910 = 4i- (25)
These results imply that the effective value of the pairing interaction decreases
in flat-confined systems and hence the estimations of transition temperatures give
lower values of T in comparison to those obtained in [9] which should allow us to
improve the agreement of theory developed in [9] with experimental data [17].

In relation to alkali metals, for which flat-confined systems can be identi-
fied with thin metallic films, we conclude that the proportional alterations of all
interaction parameters do not affect an equilibrium state.
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7. Conclusions

The presented formalism proves that the Fermi liquid and pairing interac-
tion correlate which implies that the Fermi liquid interaction cannot be ignored in
superfluid or superconducting systems. Hence, the superfluid state never can be
realized in a free quasi-particle gas. Moreover, we showed that the cut-off energy,
which manifests as a non-physical parameter in the theory of superfluid helium-3,
can be always eliminated from these results for which we can give physical inter-
pretation. Therefore, in accordance with Ref. [15] it never determines behaviour
of a system. The formulas presented in our paper constitute the simple medium
which permits to predict the appearance of phase transitions to a superfluid or su-
perconducting state in a wide class of 2- up to 3-dimensional Fermi liquid systems
and enables to study properties of new states exploiting their static and kinetic
quantities defined in a normal phase. We also should mention that within the frame
of our approach merely quantitative modifications of a system state induced by
its size, such as transition temperature or critical thickness, are available (cf. [8]).
Only one aspect of this problem has been for the first time discussed in the present
paper and further investigation is needed.
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