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ANGULAR DISTRIBUTION OF PHOTOEMISSION
FROM SURFACES OF AMORPHOUS SOLIDS

A. JABLONSKI
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Kasprzaka 44/52, 01-224 Warszawa, Poland

As follows from the formalism of X-ray photoelectron spectroscopy,
knowledge of the angular distribution of photoemission is crucial for cer-
tain applications of quantitative X-ray photoelectron spectroscopy analysis.
In the present work, the experimental data on the relative angular distribu-
tion of photoemission from solid materials are reviewed and compared with
theoretical predictions. Noticeable discrepancies are usually observed. It has
been proved that major part of the observed discrepancies can be ascribed to
elastic photoelectron scattering. The commonly used formalism, where the
elastic collisions are neglected, may be of insufficient reliability for certain
solids, or in certain experimental geometries. This formalism can be easily
extended to account for elastic photoelectron collisions by introducing two
correction factors, Qx and Ben. The second parameter, called the effective
asymmetry parameter, describes the observed decrease in anisotropy of pho-
toemission. Determination of the correction factors requires a reliable theory
describing elastic electron scattering in the solid. A need arises for accurate
differential and total elastic electron scattering cross-sections pertinent to
kinetic energies of considered photoelectrons or the Auger electrons. The in-
creasingly important role of electron transport in surface analysis has stim-
ulated an effort to construct a complete database containing the differential
and total atomic elastic scattering cross-sections.

. PACS numbers: 79.60.—i, 72.10.—d, 34.80.Bm

1. Introduction

Surfaces of polycrystalline and amorphous solids are frequently submitted to
the X-ray photoelectron spectroscopy (XPS) studies, in particular to the quantita-
tive analysis of the surface layer. Examples of such solids are polymers, supported
catalysts, biomaterials, high-T, superconductors, etc. These applications of XPS
require knowledge of possibly accurate relations between the recorded signal in-
tensity and the concentration of a given element. According to the commonly used
formalism, the contribution to the signal, d7, emitted in the layer of thickness dz
at the depth z is given by the following expression:

dI = TDIoAAQN (dox /d82) exp(—z/A cos a)dz, (1)

(787)
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where T' is the analyser transmission function, D is the detector efliciency, Iy is
the flux of incident X-rays, A is the analysed area, Af2 is the solid acceptance
angle of the analyser, N is the atomic density, A is the inelastic mean free path of
analysed photoelectrons, and « is the detection angle with respect to the surface
normal. Parameter dox/d{2 denotes the differential photoelectric cross-section.
For unpolarized radiation and random orientation of atoms or molecules, this
cross-section is described by

dox/dR2 = oxW (4, B) = Gxi 1- g (Bcos*p—1) 1, (2)

where oy is the total photoelectric cross-section, 9 is the angle between the di-
rection of X-rays and the direction of analysis, and [ is the so-called asymmetry
parameter. Assuming that the analysed area increases with detection angle o ac-
cording to A = Ay/ cos e, where Ag is the area at normal direction of analysis, we
obtain the following expression on integration of Eq. (1):

I = TDIyAgARNA(dox/dS2). (3)
Extensive derivation of the above formalisin was published by Fadley et al. [1]. As
follows from their considerations, Egs. (1) and (2) involve the following assump-
tions:

1. The X-ray refraction and reflection are neglected.

2. The X-ray attenuation within the analysed volume is negligible.

3. Elastic scattering of photoelectrons on atoms constituting the solid has
insignificant effect on the recorded photoelectron intensity.

Fadley et al. [1] have already mentioned that the last assumption may not
always be valid. This problem was frequently addressed in more recent publica-
tions [2-5]. These reports indicated that the neglecting of the elastic photoelectron
collisions in the formalism of XPS can affect the theoretically predicted charac-
teristics e.g. intensity, thickness analysed, etc. The common formalism can lead
to considerable errors in certain experimental geometries. In the present work,
stress is put mainly on angular dependencies describing photoelectrons leaving
the solid. Knowledge of this distribution is of crucial importance in calculations
associated with quantitative applications of XPS. As an example, the applications
of angle-resolved XPS (ARXPS) are based on measurements of angular distribu-
tion of photoelectrons. Experimental intensities are eventually transformed into
composition profiles in near-surface regions. Obviously, the corresponding formal-
ism should be possibly realistic to provide meaningful results.

2. Theory

Example of the photoelectron trajectory in a solid is outlined in Fig. 1.
Several photoelectron elastic collisions can occur affecting drastically the original
direction of emission. In effect, as indicated in Fig. 1, the photoelectron entering
the analyser at an angle o can pass different distance in the solid as predicted
by the common formalism. The probability of inelastic collision depends on the
total distance travelled in the solid, and thus the monitored intensity can also
be different than the intensity predicted from a formalism neglecting the elastic
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Fig. 1. Example of the photoelectron trajectory in the solid. AP and AIf denote
the contributions to photoelectron current due to i-th trajectory neglecting or assuming
presence of elastic collisions, respectively.

photoelectron collisions. Thus, we can expect that the angular distribution of pho-
toemission from isolated atoms or molecules constituting the solid is different than
the angular distribution of photoemission from solid.

The Monte Carlo method was frequently used for simulation of the electron
transport in solids (Ref. [2] and references contained therein). The corresponding
algorithm creates a number of trajectories similar to trajectory shown in Fig. 1.
The following assumptions are usually made:

1. Angular distribution of created photoelectrons follows Eq. (1).

2. The trajectory is composed of linear steps, A, described by the exponential
distribution.

3. The scattering event is defined by two angles, azimuthal, ¢, and polar, 6.
The azimuthal angles are distributed uniformly between 0 and 27. The distribution
of polar scattering angles is related to the elastic scattering cross-sections:
do/d6  (d22/d0)(do/d2)  2msinb(do/dS2)

- - bl

Tt Ot gy

H(8) =

where do/df? is the differential elastic scattering cross-section, and oy is the total
elastic scattering cross-section. A particular trajectory is followed until photoelec-
tron leaves the solid or until the total trajectory length becomes excessively large
(and the probability that the inelastic collisions do not occur becomes negligibly
small). The contribution, AIf!, to the monitored current I is calculated according
to the following rule:

exp(—z;/A) if electron leaves the solid within
Alfl = the solid angle of the analyser,

0 in all other cases,

where z; is the total trajectory length, and A is the inelastic mean free path (IMFP).
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The photoelectron intensity is estimated from

1 n
I = lim =Y A,
n-—00 1 £ : )
i=

where n is the numnber of trajectories. The Monte Carlo calculations require knowl-
edge of elastic scattering cross-sections, do/dS2. Extensive tables containing these
data are available in the literature [6-11]. However, their application in Monte
Carlo simulations is limited since the cross-sections are available for selected el-
ements and energies. The cross-sections for particular elerment and energy, equal
to the kinetic energy of photoelectrons, should be determined from an algorithm
implementing the so-called partial wave expansion method (PWEM). Numerous
such algorithms were described in the literature [12-15]. As an example, a brief
description of the relativistic PWEM algorithim is given below.

According to Lin et al. [13] and Bunyan and Schonfelder [14], the Dirac
equation describing the scattering event on a spherical potential V(r) can be trans-
formed into the first order differential equation

(’143?:(7") _k*

= ——sin 265 (r)] + [W — V(r)] = cos [263E(r)] (4)
. r

l=0,1,2, ...
where W is the total electron energy, k= = —I—1 for the “spin-up case” and k+ = [

for the “spin-down case”. The system of units is such that energy is measured in
units of mgc? and the distance in units of h/mogc. This equation describes the
functions @F () which are related to the phase shifts 5
A
6% = lim (tan='2
! T rooo ° B/’ (5)

where

A= K (Kr) = ji(Kr) [(W + 1) tan &F(r) + (1+ 1+ k%) /7],

B = Kn (Kr) — my(Kr) [(W + D tan 6F (r) + (1 + 1 + k£)/7],
K? = W? — 1, and ji(z) and n(z) are the spherical Bessel functions. The ini-
tial values of the functions & (r) are calculated from the series expansions de-
rived by Bunyan and Schonfelder [14]. On calculating the series of phase shifts

§%, 6&, 6F, .. the differential elastic scattering cross-sections are determined
from the known expressions

do/ds2 = |FO) + 9(O), ®
where

, 1 o o e

f(0) = 5% Z,: {(1+1) [exp(2i6}) — 1] +1 [exp(2i6]) — 1]} Pi(cos 8),

1 e o
g(0) = T Z [exp(2i6) — exp(2i6;)] Pl(cos?).
Py(cos §) are the Legendre polynomials, and

PII(Z) — (1 _ 22)1/2 dP[(Z).
dz
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The algorithin implementing Egs. (4) = (6) for calculations of elastic scattering
cross-sections is rather involved. Thus, it is not practical to use the corresponding
software for fast reference, since calculations of cross-sections usually require a con-
siderable computational effort. An effective solution to this problem is a creation
of a computer controlled database providing the elastic scattering cross-sections
for all elements and for a wide energy range. Such database has been recently re-
ported in the literature [16]. Examples of the relativistic and nonrelativistic elastic
scattering cross-sections are shown in Fig. 2. ‘
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Fig. 2. Differential elastic scattering cross-sections calculated at different kinetic ener-
gies for gold. Solid line: nonrelativistic calculations; dotted line: relativistic calculations.

3. Anisotropy of photoemission

The theoretical studies of the angular distribution of photoemission from
amorphous solids were initiated in 1979 by Baschenko and Nefedov [17]. The theory
developed by these authors predicts a decay of anisotropy due to multiple elastic
photoelectron collisions. This effect was studied in more detail in later reports
[2-5, 18-20]. A marked decrease in the anisotropy was found in all reported cases.
Figure 3 shows comparison of intensity of Au 4s photoelectrons calculated from
Eq. (2) with results of the Monte Carlo calculations. These calculations are made
for different XPS configurations described by angles «v and 0x (Fig. 1). As one can
see, the decrease in anisotropy does not depend critically on the detection angle «.

_ As follows from Eq. (2), the anisotropy of photoemission from atoms and
molecules is defined by the value of the asymmetry parameter. This is illustrated
in Fig. 4. The isotropic photoemission, as shown in this plot, corresponds to the
value of # equal to 0. Extensive theoretical data on the values of 8 calculated for
different subshells and different energies of radiation are avatlable in the literature
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Fig. 3. Dependence of the photoelectron intensity on the detection angle, o, and the
incidence angle of X-rays, 6x. Solid line: distribution of photoemission from isolated
atoms (Eq. (2)); circles: Monte Carlo calculations.
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Fig. 4. Differential photoelectric cross-section, dox/df2, for isolated atoms as a func-
tion of the angle ¢ and the asymmetry parameter, g.
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[21-24]. These values vary in the range from —1 to 2. In considerable majority
of cases, these values are positive. In several reports, the theoretical values of 15
were compared with the experimental values obtained for different gaseous species
[25-27]. A reasonably good agreement was found.

Within the common XPS formalism, as shown in the previous section, the
angular distribution of photoemission from solid surfaces is assumed to be identical
with the photoemission from isolated atoms or molecules: Vulli [28] seems to be the
first to show experimentally that the angular distribution of photoemission from
selected solids differs from the theory prediction. He has found that the measured
anisotropy of photoemission from s levels (i.e. of highest anisotropy) is somewhat
less pronounced than the prediction for isolated atoms. However, the experimental
values of § for other subshells were found to be larger than the theoretical values.
Such effect is unexpected since the interactions of photoelectrons with the solid
should decrease the original anisotropy of emission. Thus, one can question the
reliability of the above experiment. In 1984, the problem of angular distribution
of photoemission from polycrystalline solid was addressed by Baschenko et al.
[18]. These authors proposed a unique experimental arrangement which makes
possible a relatively accurate measurements of the anisotropy of photoemission.
The sample was a thin aluminium foil (about 5 pm) irradiated on one side with
X-rays. The foil of such thickness is transparent for X-rays and the photoemission
can be observed on the other side of the foil. The described arrangement enables
unrestricted positioning of the movable analyser. Second modification, increasing
the reliability of results, consists in measurements of the ratio of peak intensities
instead of the intensity of a given peak. This way, the influence of the analysed
area on intensity is cancelled. Baschenko et al. [18] have found that the ratio of
the Al 2s intensity to the Al 2p intensity is markedly different from zero in the
direction of X-rays. The asymretry parameter for Al 2s photoelectrons is equal
to 2 and, as follows from Eq. (2), no photoelectron current should be observed in
such XPS configuration. The intensity observed experimentally was ascribed by
Baschenko et al. [18] entirely to elastic photoelectron collisions. This hypothesis
was well supported by the Monte Carlo calculation using the published earlier
algorithm [17)]. ‘ )

Similar experiments, with much larger number of data points, were repeated
by Zemek and Jablonski [19] and Jabloniski and Zemek [20]. In these studies,
it has been found that the decay in anisotropy observed experimentally is even
larger than the anisotropy resulting from Monte Carlo calculations. This is shown
in Fig. 5a and b. Except for the elastic photoelectron interactions, the observed de-
cay in anisotropy may be also caused by other factors. The finite solid acceptance
angle of the analyser may distort the measured angular distribution of photoemis-
sion leading to apparent “flattening” of anisotropy. Such effect has been proved
theoretically by Jablonski et al. [29]. However, it has been found that the cor-
responding decrease in anisotropy is not pronounced for the acceptance angles
usually used in XPS. This problem has also been approached experimentally by
Jablonski and Zemek [20]. Figure 5b shows the intensity ratios measured within
two different acceptance angles: +4.1° and £1.4°. As one can see, no marked differ-
ence can be observed. Angular distribution of photoemission can also be affected
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Fig. 5. The ratio of photoelectron intensities, Ins/Izp, for aluminium as a function
of the detection angle. Solid line: common formalism based on Eq. (3); circles: Monte
Carlo calculations; open triangles: experimental data collected with the acceptance angle
+4.1°; solid triangles: experimental data collected with the acceptance angle #£1.4°.
(a) Figure taken from Ref. [19], (b) figure taken from Ref. [20].

by the surface roughness. Probably, this effect is responsible, to a large degree, for
the observed difference between experimental ratios and the ratios resulting from
the Monte Carlo calculations.

Jablonski and Zemek [20] proposed a modification of the described above
experimental geometry which makes possible the measurements of the angular
distribution of photoemission from any material. This geometry is outlined in
Fig. 6. 5. The aluminium foil plays a role of a support. The studied material is
deposited on one side of the foil. The thickness of the overlayer should be larger
than the escape depth of photoelectrons, i.e. 10 = 20 A. This is easily controlled
during deposition by monitoring the photoelectron peaks from the support until
they disappear. Overlayers of such thickness are also transparent for the exciting
X-rays. Figure 7 shows the intensity ratios measured for gold overlayer. Similar
effects as for aluminium are observed. Experimental ratios deviate considerably
from the ratios resulting from the common formalisn. The ratios obtained from
the Monte Carlo calculations are relatively close to the experiment, although the
difference is still noticeable.
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Fig. 7. The ratios of photoelectron intensities for gold as a function of the detection
angle (taken from Ref. [20]). Notation as in Fig. 5. (a) The ratio Iss/Is5, (b) the ratio
Inp/lsy. _

4, Corrected formalism

To facilitate calculations associated with quantitative applications of XPS,
simple expressions approximating the Monte Carlo results were proposed in the




796 A. Jabtoriski

literature [2, 5, 20, 30, 31]. Ebel et al. proposed to use the effective asymmetry pa-
rameter, Befr, instead of the parameter 3 to account for the decrease in anisotropy
[30]. Since the decrease in anisotropy depends on the scattering properties of atoms
constituting the solid, an attempt was made to introduce the atomic number de-
pendence of Gegr: '

Berr = 0.92k0,
where
k = 1.0688 — 0.0235Z + 0.00018822.

It has been found in later reports that the above approximation is not sufficiently
accurate. Better fit was obtained with two adjustable parameters, @x and fesr
(2, 5, 20, 31]:

(dox/df), = ox 4—17;Qx W (4, Bett)

= O’X%QX 1- 'Bzﬂ‘ (3cos® p — 1)] . (7)

Replacement of the photoelectric cross-section, dox/df2, in Egs. (1) and (3) by
Eq. (7) leads to formalism which is more realistic than the cornmon formalism of
XPS. Unfortunately, only limited data on the parameters fegr and Qx are available
in the literature. They refer to selected XPS configurations: (i) with the detection
angle equal to zero [2, 5, 30, 31], or (ii) with incidence angle of X-rays equal to
zero [20]. Extensive calculations are presently performed to provide the values of
the parameters Begr and Qx for numerous configurations [32].

Let us consider modifications of the formalism associated with typical quan-
titative applications of quantitative XPS. Frequent application of XPS is the quan-
titative analysis of solid surfaces. Suppose that the measurement of a given peak
intensity is done for a studied sample and for a certain standard (usually a pure
element). According to a common formalism (Eq. (3)) we obtain

I M A
Tstd — <A/[std) (/\s—td> o (8)

where M is the total atomic density, z is the atom fraction of a given element
(N = Mu), and the superscript “std” refers to the standard. The modified for-
malism (Eqgs. (3) and (7)) leads to the following expression:

T <_ﬂ> <i> < QxW (¥, Pert) )w )
Jstd T\ pfstd Astd Q%{dW(% :2{1 '

Thus, additional factor appears which takes into account the difference between
anisotropies of photoemission from the sample and the standard. In general, Eqgs. (8)
and (9) may provide different concentrations z, especially when the scattering
properties of the surface region of the sample and the standard differ considerably,
ie. if Qx # Q%Y and Ber # B

Another frequently used method of quantitative analysis involves the so-called
relative sensitivity factors, «, defined as the proportionality factor between the
peak intensity and the concentration

I = «az.
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From Eq. (3) we get
o= CS(E)(do/dR)A,

where C' = MARI is a constant independent of the photoelectron line, S(E)
is the spectrometer function. For a given spectrometer, the relative sensitivity
factors are determined experimentally or theoretically. The latter case is realized in
procedures proposed by Ebel et al. [33] and Hanke et al. [34]. Obviously, Eq. (7) is
more suitable to use in these procedures than Eq. (2) for calculating the differential
photoelectric cross-section. ’

Frequent quantitative application of XPS is the estimation of the overlayer
thickness [35, 36]. Jablonski et al. [31] published extensive analysis of variation
of the emission anisotropy in systems with overlayers. It has been found that the
correction factors fesr and @Qx strongly depend on the overlayer thickness. Simple
expressions describing this dependence were proposed. Thus, the above examples
show that quantitative XPS requires the efficient methods providing the correction
parameters QJx and feg for complex systems and for different XPS configurations.

5. Conclusions

The experimental data and the theoretical models of photoelectron trans-
port in solids indicate that the initial anisotropy of photoemission is affected by
the elastic interactions within the surface region of a solid. In effect, the angu-
lar distribution of photoemission from solid surface is different than the angular
distribution predicted for isolated atoms or molecules. This phenomenon may be
significant and should be accounted for in the formalism of quantitative XPS. Two
correcting parameters, @x and fPes, describe the actual anisotropy of photoemis-
sion with sufficient accuracy. However, much work is still necessary to propose
simple and effective methods providing these parameters for routine quantitative
applications of XPS.
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