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The outstanding properties of synchrotron radiation in particular its
high brilliancy over a wide spectral range, its low divergence, its polarization
properties, and the pulsed time structure, extend the range of single-crystal
X-ray diffractometry to experiments which are not feasible with conventional
sources, such as sealed X-ray tubes or rotating anode equipment. Data col-
lection techniques are strongly influenced by tle general aims of a diffraction
experiment, by the sample quality, its absorption and scattering power, as
well as by the reflection profile shape and the instrumental resolution func-
tion. Often, the sample properties play a crucial role, and not all samples may
be suitable for data collection with synchrotron X-rays. The time-dependence
of the primary beam intensity and of its polarrzation state requires

monitor-ing and normalization to monitor counts, which complicates data collection
and data reduction due to sources of both random and systematic errors
not known from connventional X-ray sources. There is almost no utilization
of X-ray diffraction that cannot profit from the use of synchrotron  radia

-tion. X-ray diffraction at a synchrotron radiation source can yield structure
factors of any unprecedented quality, provided proper attention is given to
sample properties, to data collection strategy and data evaluation  proce

-dures. Though little is gained for strong reflections, the improvement is very
pronounced for the weaker reflections, including  higl-order reflections, which
can be measured in much shorter time than with conventional X-ray sources.
^Iοwever, synchrotron radiation does not provide a solution to all problems,
in some cases conventional laboratory X-ray sources may be more appro-
priate than synchrotron radiation. Taking into account the limited access
to synchrotron radiation sources, X-ray diffraction with synchrotron radia-
tion can only supplement, but not replace conventional X-ray sources and
diffraction techniques.

PACS numbers: 07.85.+n, 61 .10.Jv

1. In troduction

Single-crystal X-ray diffraction with synclrotron radiation has meanwhile
become a well-established branch of X-ray crystallography which profits from the
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high intensity over a wide spectral range, a small source size and a low diver-
gence, the polarization properties, and the pulsed time structure of a syncIrotron
radiation source.

In the following we will try to give an overview of the subject, which is
inevitably biased by our own past experiences with synchrotron radiation. We will
first present a short review of X-ray scattering by crystal stuctures and of the
basics of single-crystal X-ray diffractometry. We will then discuss the shape of
reflection profiles obtained with synchrotron X-rays and the crucial role played by
the sample quality. Step scan and data collection techniques, as well as some of the
problems specific to experimentation with synchrotron radiation will be reviewed
and we will conclude with an overview of current applications and an outlook
into the possible future of single-crystal X-ray diffractometry with synchrotron
radiation.

2. X-ray scattering by single crystals

For single crystals, whose atoms are arranged on a 3-dimensional periodic
lattice, we observe interference effects similar to tlose of an optical grating. Con-
structive interference and intensity enhancement is observed only when the scat-
tering vector H, defined by the momentum transfer from incident (s0 ) to diffracted
ray (s)

X-ray diffraction by single crystals may formally be described as a reflection from
lattice planes h, k,l, with ΙΙ being normal to these planes. The angle .2θ between
incident and diffracted ray s given b y Bragg's law (n is the diffraction order)

In the kinematical theory diffraction from such an array is described by its Fourier
transform, according to tle convolution theorem by the product of tle Fourier
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transform of the array of delta functions with the Fourier transform of the electron
density in the unit cell

The lattice factor G(H) describes the shape of a reflection; the structure factor
F(Η) contains the superposition of the waves scattered from within the unit cell

The sum extends over all the atoms at coordinates rj in the unit cell; fj is the
socalled formfactor of tle j-th atom (including the effect of thermal vibrations)

It is the Fourier transform of the atomic density distribution pa(r)

normalized to the scattering of one free electron. It decreases with increasing
momentum transfer |S|. Tle terms f' and f" are called "dispersion corrections",
which are often small, but in the order of several electrons close to an absorption
edge.

The stucture factor F(Η) of the unit cell is, in general, a complex number
(real for centrosymmetric crystal structures), defined b y both its amplitude and
its phase angle

the electron density in the unit cell (V is the unit cell volume). There are two
important points to remember:

1. Elastically scattered X-ray intensities I(H) carry information about the de-
tails of the electron density distribution in the unit cell.

2. Since we measure I(H) α F(H)| 2 , only the modulus |F(H)A of the stucture
factor can be directly obtained. Its phase φ(Η), however, is initially unknown
("phase problem").

3. single-crystal Χ-ray diffractometry

The aim of an X-ray diffraction experiment is to obtain stucture factor
amplitudes |F(B)| for reflections h, k, l; sometimes only for a limited number of
reflections, but more often data sets complete up to some maximum sin θ/λ (cor-
responding to some minimum observed lattice spacing d m in = λ/2sin0max). The
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observed structure amplitude |F(H)| is related to the integrated intensity I(H) (to-
tal scattered energy when the sample is rotated through the diffracting position);
Ι α |F 2 in the kinematical theory. Determination of F(B)| involves measure-
ment of I(H) as accurately as possible, and — particularly important with the
limited beam time at synchrotron radiation sources — as efficiently and as rapidly
as practicable.

Bragg's law suggests two ways of performing a diffraction experiment:
1. variation of the X-ray energy at fixed angle θ: energy-dispersive technique;

2. variation of the angle θ at a fixed X-ray energy: angle-dispersive technique.
The latter is the method routinely used for single-crystal X-ray diffractometry
which will be discussed in the following.

In order to observe diffraction from a single crystal the photon counter has
to be positioned under the correct Bragg angle 2θ, and the sample must then be
oriented such that the reciprocal lattice vector Η is in the plane of incident and
diffracted rays, s0 and s, defined by both source and detector, with the lattice
planes h, k, l bisecting the angle between s 0 and s.

.Several diffraction geometries are in use for this purpose, the two most com-
mon being the 4-circle diffractometer and the kappa-axis goniometer; each one
has 3 circles for rotations to orient the crystal, plus the detector 20-axis (see e.g.
[1, 2]). The Euler cradle is still the most popular crystal orienter wlich combines
excellent mechanical rigidity and stability (important for experiments wlicl re-
quire ovens, cryostats, pressure cells, etc.) with only minor restrictions on sample
orientation. The also popular kappa geometry offers a greater accessibility of the
sample environment at the expense of weight that can be supported. Since data
collection techniques are almost identical for both geometries and since setting
angles are easily transformed between the two geometries, we will focus on the
4-circle geometry in the following.

The setting angles ω, x, φ (or ω', к, φ' for kappa-axes) required to observe
a particular reflection h, k,l depend on the sample orientation which is specified
by the product U . Β of the two 3 x 3-matrices U and B; B is a matrix that
transforms from generally triclinic reciprocal axes to a set of Cartesian axes, and
U is an orthogonal 3 x 3 rotation matrix which brings these Cartesian axes into
coincidence with a laboratory frame rigidly attached to the diffractometer circles.
Details depend on the choice of this laboratory frame and on the sense of rotations
and their zero points, but in general
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In principle, there is an infinite number of solutions for each reflection h, k,l,
corresponding to azimuthal rotation around the scattering vector H (so-called

ψ-rotation). That particular position where the reciprocal lattice vector H coin-
cides witl the plane of the Euler cradle is called the bisecting position; the latter
is routinely used for data collection (ψ = 0).

The orientation matrix UB is usually refined from observed angles of a series
of centered reflections. Since

(UB)T UB = ΒT  B = G* ,	 (17)
where G* is the reciprocal metric tensor with elements Gij = α*i α*j , refined cell
constants and their e.s.d.'s are easily obtained from the UB-matrix.

In order to measure au integrated intensity I(hkl) we need to rotate the
sample crystal and to record the intensity of the diffracted ray as the reciprocal
lattice point passes through the Ewald sphere

since the reflection contributes to intensity over a small and finite angular range
required to put all mosaic blocks into the reflecting position.

The essential steps of a standard data collection are:

• determination of the sample orientation;

• sample characterization, including its quality and reflection profile shape;

• choice of data collection parameters such as aperture size, scan mode, step
size and scan width, an hkl-order that minimizes motor slewing times, and
the counting time per step;

• actual data collection, including a rapid data reduction and analysis to allow
feedback into the running measurement.

Today's diffractometer-software eliminates a lot of manual effort and the tedious
details of a data collection. It cannot, however, substitute a careful planning and
a thoughtful execution of a diffraction experiment.

4. Reflection profile shape

4. I. Resolution function

From the incident white-radiation spectum a small monochromatic band is
selected using suitable single crystals. According to Bragg's law

nλ = 2dsin0 	 (10)
a single-crystal monochromator will not only transmit the wavelength λ, but also
its higher harmonics λ/n, n = 2, 3, ... (unless they are "forbidden"). nigher har-
monics may be suppressed by (slightly) detuning a double-crystal arrangement
which, in addition, allows for a constant beam exit. Typically, perfect Si and Ge
crystals are being used for monochromatization, which are stable in the intense
white X-ray beam, yielding an energy resolution ΔE/E≈ 10 -4 , and an intrinsic
width of the reflection curve (Darwin width) in the order of seconds of arc — for
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Sí(11I) e.g. Δ0D = 0.036 mrad at 8 keV — which is well matched to the natural
divergence of synchrotron X-rays.

An important advantage of synchrotron X-rays over the characteristic radi-
ation from anode materials of a sealed tube is the absence of the αι-α 2-splitting,
yielding much simpler (unimodal) reflection profiles with a small wavelength
dispersion. Therefore, au ω-scan is the scan technique to be used for intensity data
collection rather than ω-20 scans frequently used with conventional

diffractometers. Such an ω-scan integrates — for each step — over the detector aperture, and
results in a 1-dimensional reflection profile (rocking curve) which is the projection
of the 3-dimensional reflection shape onto the ω-axis.

An ω-scan yields the best possible resolution for a given diffractometer; each
reflection must be measured individually, however. More efficient are area detectors
which allow a fairly rapid two- or even three-dimensional exploration of reciprocal
space.. For a 2-dimensional analysis of reciprocal space with single point-counters
the socalled Q-scan may be used whose start and endpoint are defined by arbitrary
coordinates (h, k, l)start and (h., k, l)end, with steps (Δh, Δk, Δl). Such a scan is
made with a combination of the four diffractometer angles, without any fixed
relationship between the individual circles. In special directions (radially) Q-scans
may degenerate to pure ω-20 scans.

The 3-dimensional shape of a Bragg peak is determined by the instumental
resolution function and by the sample, combining the effects from beam diver-
gence, wavelength-bandpass, sample- and monochromator mosaicity, and sample
size. For collection of integrated refection intensities the projection of this resolu-
tion function onto the scan axis (ω) is required to define the correct scan range
and step size. Usually the resolution function is approximated by a convolution of
Gaussians [3]. This approach simplifies calculations but the fmal result tends to
obscure the influence of the individual parameters. Much more useful for practical
purposes is an approach which considers the spatial orientation of the individual
contributions from beam, sample and instrument to the diffractometer's resolution
function (e.g. [4, 5]). Usually the individual components have different orientations
in the instrumennt's angle space, and it is easier that way to identify components
which contribute to the resolution function in a specific direction. This is of par-
ticular importance when an optimum resolution is required for some experimental
problem.

Neglecting the contribution from the sample, the instrumental resolution
function does not depend on azimuthal rotation, i.e. it is independent of the
ψ-value. This is not always the case, however, when sample properties are taken
into account, in particular not for disordered and twinned crystals, for which re-
ffection profile shape may strongly depend on sample orientation.

4.2. Reflection profiles

The projection of the 3-dimensional resolution function on the scan axis must
be known in order to determine the width for each scan. The resolution function
is even more important when details of the three-dimensional diffraction pattern
are to be examined. Assuming a convolution of Gaussian components, the full
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width at half maximum (FWHM) of the rocking curve (this is the angular range
over which a crystal diffracts as it is rotated througI the Bragg position) has the
following major contributions [1]:

: natural divergence of the SR beam (α λ0,4/Ε),
: angle subtended by the source at the sample,
: angle subtended by the sample at the source,
: mosaic spread of the crystal,
: wavelength dispersion spread (α λ 2 ),

where σQ is the source size, σC is the crystal size, and R is the source-to-sample
distance. This means, divergence is determined by the source, by geometric factors,
by the wavelength bandpass, and by the sample properties. Collecting 0-dependent
terms, the above equation reduces to the weIl-known expression 	.

The natural divergence of the synchrotron radiation Δ0 s 1/-γ (-γ = 1957Ε, where
Ε is the electron beam energy in GeV) is of the ordcr of the Darwin width of a
Bragg reflection from perfect crystals (polarization neglected)

The bandwidth (dispersion spread) Δλ/λ = ΔΕ/Ε of a perfect-crystal monochro-
mator is, neglecting Δ0Q and Δ0s ,

Dne to the small source size (< 1 mm), the small vertical beam divergence
(.. 0.1 mrad), and the large source-tosample distance (30-40 m) the full width
at half maxinum (FWHM) of the rocking curve is mainly determined by the
sample, not by the synchrotron X-rays. The FWHM of mosaic crystals is almost
exclusively determined by their mosaic spread 0NI; for perfect crystals both beam
divergence and Darwin width must be taken into account. Perfect crystals have a
FWHM Δ0 < 0.01°; reflections from good quality mosaic crystals have a FWHM
of typically 0.02-0.0,3°, which is about a tenth of what one observes with a sealed
X-ray tube. For comparison: a sealed tube with a 150 mm long 0.5 mm diameter
collimator will give a divergence of about 3 mrad, corresponding to 0.2° FWHM.

The above discussion appIies only o the vertical plane for which the natural
divergence Δ0S of the synchrotron X-rays is extraordinarily small; the divergence
in the storage ring plane is — fora bending magnet — given by the length l of
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the segment of the electron beam which can be seen by the sample at a distance
R:

Δ0h = l/R.(24)

This quantity is defined b y slits and compares well with the divergence of con-
ventional X-ray sources. The result is an extremely anisotropic resolution function
with excellent resolution (< 10 - `1 Å -1 ) in the vertical plane, and an order of
magnitude smaller in the horizontal plane.
Summarizing, we can state that single-crystal diffractometers at a synchrotron
radiation source can provide, without additional experimental effort, a resolution
that compares to triple-axis spectrometers, without intensity losses, with an ex-
cellent peak-to-background ratio. This allows high-resolution X-ray diffractometry
with short data collection times, even for the weaker reflections.

4.3. Influence of the sample quality

As we have seen, the profile width and shape of mosaic crystals is determined
by their mosaic spread, not by the synchrotron X-ray beam divergence. The sharp
reflection profiles from good-quality mosaic crystals result in a nuch improved
peak-to-background ratio, a very welcome feature. This is not so, however, for
poor-quality samples: the highly collimated beam makes the sample quality read-
ily apparent. The distribution of mosaic blocks is often very inhomogeneous; rock-
ing curves from poor-quality samples comprise several, more or less well-separated
peaks, often combined with a highly anisotropic peak width and shape which de-
pends on sample orientation. These effects interfere with measurement of accurate
reflection intensities; they allow á sample characterization and investigation of
twinning, domains, and disordered crystals, however.

Measurement of an integrated intensity may thus not always be a trivial task;
it may require modified scan techniques, such as continuous scan mode (discussed
further below) to ensure complete integration over the sample volume and wide
detector apertures at the expense of increased background. Most importantly, the
volume that actually scatters at each point of a step scan is only part of the total
sample volume, resulting in appreciable intensity losses. The question how much
intensity can be gained relative to a sealed X-ray tube is therefore not so easy to
answer. A simple statement of photon flux at the sample position may be highly
misleading. The actual intensity gain depends on the sample; it is larger for perfect
crystals and for crystals with a small mosaic spread (on the 4-circle machine at
HASYLAB intensity gain is typically 1 to 2 orders of magnitude). In the worst case
it may turn out impossible to measure true integrated intensities for all reflections
of a sample with highly anisotropic mosaic spread (no such problem might be
encountered for the same sample using sealed X-ray tubes) and the peak intensity
may be, for a given sample, smaller at a synchrotron radiation source than with
X-rays from a sealed tube.

The intrinsically high resolution may be a nuisance for intensity data collec-
tion on bad-quality samples, but it is a welcome property for sample characteriza -

tion, particular in cases of twinned and disordered crystals.
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4.4. Influence of the detector aperture

So far we have neglected the influence of the detector on the resolution
function, making the assumption that the wlole reflected beam actually enters
into the detector — a very important requirement for measurement of integrated
reflection intensities. Otherwise, an additional detector term had to be added to
the above equations. A small receiving slit or — even better — an additional
analyzer crystal between sample and detector is very useful, however, to further
increase resolution, at the expense of intensity. Integrated intensities may become
meaningless in this latter case because of scan truncation errors.

5. step scmi modes

In cases where Δλ/λ (or Δd/d) is the dominant contribution to the reflection
width (e.g. the α1 -α2 splitting of a sealed X-ray tube), an ω-20-scan is appropriate
with a detector aperture wide enough to accept the whole diffracted beam, incor-
porating geometric factors and broadening from mosaic spread. For synchrotron
radiation and perfect-crystal monochromators the wavelength spread is very small
(Δλ/λ = 4 x 10 -4 for Si(111) at 8 keV), unless strain causes a variation of Δd/d.

To measure an integrated reflection intensity I(hkl) the sample has to be
rotated through a limited angular range, required to sweep the reciprocal lattice
node h, k, l and the sample's mosaic blocks through the reflecting position, while
the detector counts the diffracted photons. Since the incident radiation is strictly
monochromatic, we lave a distinct 2θ (from Bragg's law) for each d-value. With
the low-divergence X-ray beam the reflection profile closely resembles the mo-
saic spread (see above), and an -scan is appropriate for data collection, not an
ω-20-scan (ω-20-scans are required, however, to locate reflections when the wave-
length is not exactly known). Any detector movement may move the reflection
out of the detector opening, cutting into the tails of a peak. This may still yield
nice-looking profiles with apparently low background, but it also yields systemati-
cally wrong intensities. The detector opening must be wide enough to intercept the
whole diffracted beam, allowing for errors in the orienting matrix used to calculate
setting angles 2θ, ω, x , φ. Errors in thcse angles will offset the reflection from the
center of the detector slits; comparison of calculated and centered peak positions
may give an idea of the order of magnitude of these errors (for a good UB-matrix
setting angles may be accurate to few steps in the diffractometer circles).

Many crystals have reflection profiles with sharp peak and long tails. A tra-

ditional step scan requires therefore, due to the small step size, a large number
of steps to safely reach the background, yet to sample the peak region with suffi-
cient accuracy to determine a reliable integrated intensity. Actually, an appreciable
amount of measuring time is then "wasted" on measuring the tails and the back-
ground. A better distribution between peak and tails may be achieved by using
spread step scans with finer steps in the peak center, and wider steps in the tails
[6, 7]. Such unequal step-width scans require, however, that the peak position is
precisely known.

To further reduce the number of profile sampling points, and the amount of
output, a continuous scan mode may be applied with counter read-out 'on the
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fly" at fixed time intervals. This provides a true integration over the peak, and a
small number of "steps" is sufficient to sample the peak profile. Since each step is
actually an integral, this may create problems with the dead time correction for
higher count rates. This is certainly a drawback of the continuous scan method,
but it works fine for weaker and medium intensity reflections, tolerating peak
offsets of 0.01° and even larger, relaxing the requirements on the accuracy of the
orientation matrix UB. Continuous scan mode is often the best scan type to choose
for poor-quality samples with split reflections and anisotropic peak shapes, but it
is also valuable for fast data collection on high-quality crystals.

Continuous scan mode is also the optimum scan technique to use with auto-
matic reflection search procedures. The narrow width of reflection profiles interferes
with traditional peak search techniques, as the narrow peaks are easily missed in
a (coarse) step scan. Knowledge of the instrumental resolution function may help
to optimize step sizes for an automatic search ("peak hunt"). The step width in 20
depends only on the detector aperture size, χΡ is rather insensitive and may step
1-2° at a time, but ω and φ may require very fine step widths. The solution is
to use either a continuous scan mode or to apply film techniques to bracket the
search range for subsequent scans.

Determination of the sample orientation is rather straightforward if the cell
constants and the setting angles of a couple of reflections are already known.
Otherwise, the quickest method is often to take a rotation photograph, using photo-

graphic film or an image plate. Reflection positions are read off the developed film
or image plate and the diffractometer is instructed to search and center a couple
of these film reflections. Reflection search may be combined with an auto-indexing
procedure; under favorable conditions a refined orienting matrix is obtained in less
than an hour.

Knowledge of the cell constants and of the indices of a few intense low-order
reflections simplifies the orienting procedure. This knowledge may easily be ob-
tained from conventional powder diffraction prior to a synchrotron radiation ex-
periment.

G. Εxperimental problems

6.1. Moniorization of intensity and polarization

Since the beam intensity decays during a "fill", it is essential to monitor the
beam intensity I0 in order to normalize diffracted intensities. There are several
methods; the two most common are to use ionization chambers or the scattering
from amorphous materials inserted in the beam. At HASYLAB we use a "po
larimeter" [8] which simultaneously monition intensity I0 and degree of linear
polarization Q of the incident beam,

I0 = Ih +Iv and Q = (Ih— Iv)/I0, (25)
Ιh and Iv being the intensities of horizontally and vertically linear polarized beam
components, respectively.

Q depends on the position of the sample relative to the electron orbit and
may change during a fill. Typically, Iv ≈ 0.05h„ giving Q ≈ 90%. Errors in the



Single-Crystal X-ray Diffracometry ... 507

assessment of the degree of polarization are much less dramatic than might be
expected: for medium Bragg angles between 30° < 20° < 50° and complete neglect
of the polarization correction even a change of Q from 90% to 80% would affect
the integral intensity by only about 2% [9].

The polarization factor derived from Q is

P = ½[(1 +Q) +(1-Q)cos220](26)

assuming a vertical diffraction geometry where we have almost no intensity loss
through polarization factors.

6.2. NormaIizatio n

The time-dependence of the X-ray source intensity requires a decay cor-
rection and normalization of the measured reflection intensities. The individual
counts are therefore scaled to a constant (reference) monitor count with counting
statistics and dead time of the monition taken properly into account (see below).

For each profile count Ci, i = 1, ... , n there are additional counts from beam
monition Chi and C. Defining a local beam intensity Ii = (Chi +Cvi) and a
polarization ratio Qi = (Chi — Cvi)/Ιi, the simplest approach would be to scale
each step count Ci for its local I and Qi individually. This however, has a Serious
disadvantage: for all but the weaker reflections the accuracy of the data would
then be determined by the monitor counts rather than by the reflection shape and
intensity. A better approach is to use averages (Ch) and (C): averaging improves
statistics by a factor n, where n is the number of profile points. Since n is typically
about 100, the error can thus be reduced by an order of magnitude relative to the
simple point-topoint normalization approach.

Therefore, our data normalization strategy looks like follows [9]: normaliza-
tion to ((Ch) + (Cv )) provided both Chi and Cvi do not show a significant drift or
scatter; otherwise we try to correct with a least squares fit to (Chi + c) before
averaging. If such a correction turns out insufficient, a point-topoint normaliza-
tion is applied. Since the contribution from the monition to the standard deviation
of the integrated intensity, σ(I), is taken into account, "bad" reflections are auto-
matically given a larger standard deviation than "good" reflections and a (much)
smaller weight in subsequent data processing and structure refinement.

6.3. Counter dead time

An important point to consider is the effect of higher harmonics and dead
time losses in the counting chains (dead time is the time following an event during
which no further events can be detected). Data reduction includes a dead time
correction for all the photon counters, including monitors.

For a pulsed source (like a storage ring) the time stucture of the source
may complicate dead time correction at high count rates [7], which are therefore
avoided by inserting appropriate combinations of attenuation filters. For a dead
time shorter than the bunch separation nothing is gained by decreasing the dead
time, unless it could be reduced below the bunch length (in the order of nanosec-
onds). A dead time longer than the bunch separation makes the counter unrespon-
sive for several bunches. Actually, bunch frequency is in the order of MHz, count
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rates are often < 10 5 , i.e. on average only one out of several hundred bunches may
lead to a detectable event, even for the stronger reflections. ΝaI(Tl) scintillation
counters lave dead times of a few μs (limited by the decay of light emission); for
such a detector a storage ring appears like a continuous X-ray source (this may
not be the case for the much faster plastic scintillators), and the usual correction
(e.g. [10, 11]) applies

Ncorr = Nwin/(1 - τNint) (27)

This correction has to consider the tot001 count rate Nint , including higher harmon-
ics. Nw i n is the count rate in the single-channel analyzer (SCA) window, set to
reject higher harmonics. Since Nw in is only a part of the total count rate, the often
used approximation

Ncorr = Nwin/( 1 — τNwin) (28)

is simply wrong. Assuming that Nint/Nwin = K, i.e. a constant ratio of zero order
to ligler harmonics, we may write

N corr = Nwin/(1 — τΚNwin) = Nwin/(1 — τ 'Nwin) (29)

• using an "effective dead time" τ' = Kτ. For practical purposes this approximation
has been found to work satisfactorily, provided the relative higher-harmonics con-
tent does not change significantly during data collection [9]. The preferred method,
however, is to measure both zero order and higher harmonics simultaneously and
to use Ni n t for dead time correction [12].

Since the separation of two bunches (< 1 μs) is smaller than the dead time
of a ΝaI(Tl) counting chain, electronics cannot separate two or more photons per
bunch; several photons per bunch will give — due to pile-up — a pulse of a higher
energy, which is rejected by the SCA.

A proper choice of monochomator crystals may help to reduce the higher-
-harmonics content: the second order reflection 2,2,2 of the 1,1,1 reflection from Si
or Ge is "forbidden" ; the allowed 3,3,3 and 4,4,4 can be discriminated against
electronically using pulse-height discrimination (SCA). Additional detuning of
the double-crystal monochromator reduces the higher harmonics contamination
to I(λ/3)/I(λ) < 10 -3 .

7. Data coHection

Tlere is no simple and general answer to the question low to collect
single-crystal X-ray diffraction data with synchrotron radiation. Some of the problems

related to data collection with syuchrotron radiation have been discussed by Wend-
schuh-Josties and Wulf [13] and by Kirfel and Eichhorn [9]. The latter deal with
high precision structure factor measurement, the former address aspects of data
collection on small and/or poor-quality crystals (though the authors do not state
this explicitly).

In general, one wants to collect a data Set, complete to some maximum
sin 0/λ-value, of sufficient quality in the shortest possible time. The details of data
collection depend on the general aims of the experiment, the synchrotron radiation
spectrum, sample quality, sample absorption and scattering power, peak width and
shape, and botl absorption and parasitic scatter in air. Most of these faction are
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wavelength-dependent and partly counteractive (e.g. a decreasing integral reflec-
tivity with decreasing wavelength, but smaller absorption, smaller Darwin width
and generally a better peak-to-background ratio at shorter wavelengths). The op-
timum wavelength for some given conditions is not always obvious and sometimes
difficult to determine. So far, there exists no clear cut answer, and further inves-
tigations are still required on this subject.

For each reflection we want optimize scan width and step size, counting time
per step, and we need to determine the proper filter combination. The narrow
reflection profiles from samples with a small mosaic spread require very small steps
for measuring, typically 0.002-0.003°, in order to allow for a proper integration.
The accuracy of calculated angular positions is, for good quality crystals, after
refinement of the orienting matrix, in the order of 0.005-0.010°. For poor-quality
samples, however, position errors may easily exceed 0.010°. Since the peak position
is therefore not always accurately known, a pre-scan may be required to locate the
peak center, to select attenuation filters, and to set tle counting time per step for
an optimized main scan. Therefore, the data collection algorithm implemented on
HASYLAB's 4-circle and kappa-axis diffractometers [12] comprises the following
main features:

. • location of the reflection position, if required by making a pre-scan,

• determination of the proper filter combination, if required,

• evaluation of the optimum scan parameters, and

• a subsequent step scan with real-time monitoring of the beam intensity and
polarization for data reduction.

The usual procedure to obtain a higher accuracy is to extend the counting
time per profile step. If we do so at the synclrotron source we will, however,
encounter a significant decay of primary beam intensity over the reflection profile;
the decay rate depends on the lifetime of the electron beam in the storage ring. Such
a decay requires a correction; in the worst case we are back to a point -per-point
scaling, loosing the factor √nin accuracy. This leads to the paradox situation
that increasing of the measurement time may actually decrease the data quality.
To obtain data of higher accuracy it is tlerefore generally preferred to measure
symmetrically equivalelnt reflections and to improve data by averaging rather than
to extend the counting time to more than 1-2 s/step. An alternative is to scan
each reflection repeatedly and to add scan profiles until the desired accuracy has
been reached. Typically, we use 0.l-1 s/step for data collection.

Au important part of data collection is the repeated measurement of a set
of test reflections at regular intervals. Statistical analysis of the test reflections
may give a first hint on data quality and yields a measure of beam and sample
stability and an opportunity to derive time-dependent scaling functions to put all
reflections on the same (relative) scale, e.g. in the case of a crystal decay in the
X-ray beam. It is common practice to check tle intensity of the standards vs.
time, and to correct for fluctuations, if required. In principle one might check for a
dependence on various experlmental parameters; such checks are, however, rarely
done.
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The time-dependence of the synchrotron radiation source may easily cre-
ate time-dependent errors not known from experiments with sealed X-ray tubes,
which may pass unnoticed without an extra analysis. Improper treatment may
easily defeat the advantages gained by high intensity and low divergence of the
synchrotron radiation source. Data evaluation should therefore include additional
checks to make sure there are no such errors left uncorrected. The simplest and
quickest method is to plot the intensity of the test reflections vs. the monitor count
rate; ideally such a plot exhibits only random scatter.

8. Applications

Diffraction experiments with synchrotron radiation make use of the high
intensity, the good collimation, the polarization properties, and the wavelength
tunability over a fairly wide spectral range.

The high photon flux permits measurement of weak effects such as diffuse
scattering, magnetic and nuclear scattering, and satellite reflections. The low diver-
gence yields a high intrinsic collimation, high resolution and a good signal-tonoise
ratio. Thus features close to the main Bragg peaks and from twinned crystals can
be resolved.

The high source intensity makes experiments possible that require a small
sample volume, e.g. the use of high-pressure cells. Data collection is possible on
crystals down to and below Ο μm diameter; essentially crystal structure analysis
becomes feasible using a single powder grain.

Measurement of weak and very weak ("forbidden") reflections profits from
high intensity, low divergence, almost θ-independent polarization, and a good
peak-tobackground ratio. Data collection at short wavelengths is useful to de-
crease both absorption and extinction effects and provides the resolution required
for high precision structure analysis.

Wavelength tunability is frequently used to exploit resonant X-ray scatter-
ing ("anomalous dispersion") for structure research. Examples are determination
of absolute configuration, contrast variation, and phase determination from both
single and multiple-wavelength measurements, and the investigation of stuctural
details involving the anomalous scatterer(s).

X-ray dichroism and double refraction is observed in the vicinity of ab-
sorption edges, causing an anisotropy and polarization dependence of anomalous
scattering. This anisotropy may give rise to a violation of extinction rules for
glide-planes and screw-axes, with orientation- and polarization-dependent inten-
sities. More recently, these effects have been successfully used to derive (partial)
phase information.

Phase information on triplet-phase relationships can also be derived from
multiple-beam diffraction ("Umweganregung"), providing an experimental solu-
tion of the well-known "phase problem" in X-ray crystallography.

Other applications are both resonant and non-resonant magnetic X-ray scat-
tering and time-resolved X-ray diffraction. The former profits from high intensity,
tunability and polarization properties, the latter exploits the time stucture of the
synchrotron radiation source.
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9. Future developments

Traditionally, monochromatic-beam, small-molecule X-ray diffractometry has
been using NaI(Tl) point detectors; area detection — in particular image plates
[14] — have come recently into an increasing use. Image phates provide a large
dynamic range (1:10 5 ), a good linearity, a low background and high sensitivity
for low count rates, and reusability. They can be expected to replace the scin-
tillation counters of single-crystal diffractometers for routine data collection,  in
particular for rapid measurement of large amounts of diffraction data, using the
well-established rotation method [15]. Replacement of diffractometers by image
plate systems witl on-line scanners is increasingly common for protein crystal-
lography for which rapid data collection is crucial as many macromolecules suffer
radiation damage in the X-ray beam.

The image phate is ideally suited to gaining a quick overview over (parts
of) reciprocal space; the extended view provided by an image phate (similar to
photographic film) is very convenient for a preliminary investigation of sample
quality, systematic absences, superstructure peaks, twinning, incommensurability,
etc.

This raises the question about the future of single-crystal diffractometry at
synchrotron radiation sources, where beam time is of prime importance. From the
limited material that is available at present it appears that data collection with
image plates may yield structure amplitudes of a quality comparable to conven-
tional diffractometry; image-plate data probably have a quality sufficient for high
precision work like electron density analysis, but this has to await more rigor-
ous tests in the future. So far data collection and data reduction techniques have
mainly been optimized for protein crystallography; small-molecule crystallography
may require some modification of the data evaluation procedures.

Α problem with image plates is certainly the limited high-angle resolution
of the presently available on-line systems which may be overcome by using a
diffractometer in combination with off-line scanners. Controlled movement of the
plate during exposure may serve to extend its applicability to time-resolved studies.
Even the use of both scintillation counters and image phates on the same machine
may be a sensible choice for certain diffraction experiments.

10. Conclusions

Synchrotron radiation has a pronounced impact on scattering experiments
in general, and on X-ray diffraction in particular. Crystallographers are using
synchrotron radiation facilities for experiments that take advantage of the out-
standing characteristics of synchrotron radiation, namely, a wide distribution of
wavelengths, high intensity, low divergence, linear polarization, and a pulsed time
structure. There is hardly any field of X-ray diffraction that cannot profit from
the use of synchrotron radiation. Single-crystal X-ray diffraction with synchrotron
radiation may help to solve traditional problems; synclrotron radiation may also
help to extend the range of X-ray diffractometry to experiments which are not
feasible with conventional X-ray sources and traditional equipment. In addition to
the more familiar diffraction experiments new types of crystallographic studies are
progressing rapidly with more general access to synchrotron radiation sources.
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Synchrotron radiation does not  provide a solution to all problems, in some
cases conventional laboratory X-ray sources may be more appropriate than syn-
chrotron radiation. Taking into account the limited access to synchrotron radia-
tion sources, X-ray diffraction with synchrotron radiation  can only supplement,
but not replace conventional X-ray sources and diffraction techniques. However,
single-crystal X-ray diffraction witl synchrotron radiation can be expected to re-
main in the forefront of crystallograplic research in the next several years.
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