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CHARACTERIZATION OF CONCAVE-CURVED
SPECTROMETERS FOR 2D X-RAY OPTICS
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A procedure for calculating X-ray intensity profiles analytically for var-
ious X-ray diffraction geometries has been developed, which takes into ac-
count the misalignment, the solid angle factor, the effects of convergence
and/or divergence of the diffracted X-rays. The approach is applicable to
X-ray optics with either a point source or a quasi-parallel beam. Moreover,
using this procedure allows one to calculate the magnified image from a
plasma source, the intensity profiles of topographs of bent crystals, and the
spectral resolution of various focusing geometries. Several examples are pre-
sented to demonstrate the applications of this procedure. Using non-disper-
sive and dispersive double-crystal spectrometers, rocking curves were mea-
sured for singly and doubly bent crystals. The agreement was satisfactory
with the X-ray dynamic theory of bent crystals. Furthermore, we have also
extended the study of X-ray optics to include the crystal anisotropic eflects.
The anisotropic clasticity theory is applied to bend crystals for calculating
the diffracting region on the crystal surface. The anticlastic curvature effects
are analytically demonstrated with respect to the crystals’ diffracting area.

PACS numbers: 07.85.+n, 29.30.Kv

1. Introduction

Curved diffractors for imaging and focusing X-rays are of great interest in
X-ray optics and their applications in X-ray spectroscopy, X-ray imaging, and
X-ray plasma diagnostics [1-3]. Hence, it is necessary to be able to evaluate X-ray
optical systems by employing curved diffractors in order to optimize a given sys-
tem’s performance. A procedure for calculating X-ray intensity profiles analytically
for various X-ray diffraction geometries has been developed [2], which takes into
account the misalignment, the solid angle factor, the effects of convergence and/or
divergence of the diffracted X-rays. The method is versatile to X-ray optics with
either a point source or a quasi-parallel beam. In this article, several examples to
plasma imaging, to synchrotron radiation source, and to measurement of the bent
crystals’ parameters are illustrated.

Both non-dispersive and dispersive arrangement of the double-crystal spec-
trometer for measuring the rocking curves of bent crystals are presented [4-5]. The
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experimental results are compared with the theoretical calculations which include
the reflection curve of the bent crystal described by Takagi-Taupin theory and the
effect of the finite source size.

Moreover, the investigation to the crystal anisotropic effects on bent crys-
tal X-ray optics has also been performed [6]. The anisotropic elasticity theory is
applied to bent crystals for calculating the diffracting region on the crystal sur-
face. The relationship of the radii of curvature for bent crystals and the crystal
compliance tensor is obtained. The anticlastic curvature effects are analytically
shown with respect to the diffracting areca and the collection solid angle. It is il-
lustrated that the occurrence of the anticlastic curvature effect directly depends
on the crystal orientation.

2. Calculations of X-ray intensity profiles for various diffraction
geometries

For the calculation several assumptions have been made as the following:
(1) the source is an ideal point source; (2) the diffractor (curved crystal) size is
small compared with the radius of the focal circle; and (3) the crystal rocking
curve is a Gaussian distribution. The last assumption implies that the crystal’s
rocking curve can be expressed as follows:

R(A0) = I/Iy = exp(—A0%/A0F1n2), (1)
where Ay is half the full width at half maximum for the rocking curve, and Af
is the angular deviation; I and Iy are the diflracted and incident intensities for a
parallel beam; and R is the reflection coefficient. For a given diflraction geometry,
shown in Fig. 1, with a curved diffractor, the intensity profile can be expressed in
linear coordinates relative to the diffractor’s'surface by using relationships between
Af and the linear coordinates. Then, the results of including the misalignment
effects yield _

Al(z,2) = Az? 4+ Ba®+C2*+ Dez® + Exz+ Fe+Ge+12%2+J23+H,  (2)
where coeflicients A through If containing the Bragg angle 0 and misalignment
parameters zg, ys, and z, are listed in Table I. For X-rays divergent from a point
source, the diffracting region on the curved diffractor’s surface subtends a solid
angle £2(z, z) at the source. The solid angle is expressed as a function of the Bragg
angle and the misalignment parameters. The resulting reflection coeflicient yields

R(z, z) = exp[-A0(z, z)?/A0F In 2)2(z, 2), (3)

where 2, the solid angle factor per unit surface area, is expressed as

' PS.-n oy\? ay\? ~

n =" 29 oy
(2:2) = 5P \/(c‘)x) ta:) T @
Equation (3) describes the intensity distribution on the surface of the curved crystal
for either the aligned or misaligned case for a given point X-ray source. PS and
n are the incident X-ray and the normal vectors, respectively (Fig. 1). The solid

angle factor is needed for cases where tlie shape of the intensity distribution either
on the surface or on the image plane is important due to the varying distances
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' TABLE I
Cocflicients of Eq. (2).
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Ry, Ra = Radius of the surface || and L to the focal circle plane,
", R4 = Radius of the planes || and L to the focal circle plane,
n =sin?0p — ys, m = 25 + cos O sin 0p, s, ¥s, and ¢ are source displacements,
K =224 y2+ 22 +sin® 03(1 — ys) + 225 sin 0 cos Op.
In TableI ¢ = z

TABLE II

Various bent crystal diflraction geometries.
Ry Ry " RS
Jolhann 1 00 0o
Johansson 1/2 00 00
Von Ilamos 00 1 1
Spherical 1 1 1

Toroidal 1 sin? 0 sin? 0p
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Focus

Fig. 1. Schematic diagram of the focal circle of a curved crystal diffractor. Coordinates
of zs, ¥s, and z; are parameters of the source position for possible misalignment. The
coordinates used here are normalized by dividing the actual Cartesian coordinates by
the crystal’s radius of curvature.

between the diffractor surface and the source. For the intensity distribution of
the diffracted X-rays at an arbitrary plane above, below, or at the focus can be
obtained by projecting each point on the surface, which satisfies Eq. (3), onto the
plane of interest.

Equation (2) can be applied to various diflraction geometries by setting the
values of the normalized radius of curvature as shown iu Table II. Thus, for a given
geometry, Af is determined and so does the intensity profile on the surface of the
crystal. Figure 2 illustrates intensity profiles for Johann, Johansson, von Hamos,
and spherically bent crystal focusing geometries. It can be seen that for a given
rocking curve width, Johann and Johansson geometrics are nearly the same as far
as the arca of the surface used for diflraction. Certainly, Johansson will be more
superior when the crystal size becomes larger in & direction. Clearly, there is nearly
no difference of the intensily profiles for spherical and von Hamos geometries,
which implies that the spherically bent crystal has no advantage of utilizing large
diffraction area of the surface, but providing a quasi-focused diffracted beam in
both z and z directions.

Moreover, the parameters, zs, ys, and zs shown in Fig. 1 as a source dis-
placement, can also be well applied to diflerent cases:

(1) For imaging an X-ray plasma source, for example, zg, ¥, and z; can
be selected for diflerent values to obtain various magnifications of the source,
e.g. £s < 0 and y5 > 0. For obtaining a magnified (5x) image of the source, the
spherically bent crystal used for imaging the X-ray plasma source is displaced from
its aligned position, namely, the source is located closer to the crystal along the
line joining the source and the center of the crystal shown in Fig. 3a. Using Eq. (3),
an intensity profile over the surface of the crystal for a displaced point source is
obtained, and shown in Fig. 3b. It is evident that only a small diffraction region of
crystal is utilized to increase the spatial resolution and the desired magnification
on the expense of losing collection efficiency of incident X-rays.
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Fig. 2. Intensity profiles on the crystal surface for Johann case (a), Johansson case (b),
spherically bent case (c), toroidally bent case (d) and von Hamos case (e). The Bragg
angle used is 39.64° and the rocking curve width is 10~* radian. z and z are normalized

coordinates.

Focal circle

Image plane

Fig. 3. (a) Schematic diagram of the focal circle of a curved crystal diffractor for a
misaligned source position. The source is moved closer to the crystal surface along the
line joining the source and the center point of the crystal. The amount displaced is
zs = —dycosfp and ys = d;sinfp, where d; is the distance between s and s'. The
‘magnification can be obtained by moving the source closer to the crystal. (b) Intensity
profile on the surface of a spherically bent crystal with the Bragg angle 82.89°, rocking
curve width 10™*, radius of curvature 151 mm, and d; is 60.4 mm. Note that the scale

of z is 100 times larger than that of =.
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(2) For evaluating bent crystals’ parameters, s, ys, and z are used as fitting
parameters to simulate the photographically recorded line profiles, so that the
rocking curve width and the peak reflectivity of a crystal can be deduced. It
should be noted that the rocking curve width of common diffraction crystals, as
is generally known, is of the order of 1075 to 10~3 radian. This is a rather small
quantity to measure, and requires the divergent beam incident on the bent crystal
to be confined to an angular range of no less than an order of 10~%, which results an
impractical incident intensity on the crystal surface. Figure 4 shows the diflerence
in widths of two intensity profiles. Using the same Bragg angle and Afg, the half
width of the rocking curve, Fig. 4a illustrates an intensity profile in angular units,
whereas Fig. 4b shows the same prolile in lincar normalized coordinates along the
z-axis. Due to the drastic difference in terms of their widths, it is evident that the
intensity profile from Fig. 1b allows onc to measure the actual width of the profile.
This is, in fact, the key enabling one to measure the small quantity Ay for bent
crystals.

Fig. 4. Intensity linc profile parallel to z-axis for (a) a cylindrically bent crystal, (b) a
flat crystal. The Bragg angle used is 39.64° and the rocking curve width, Afy = 1074,

By using a point X-ray source and the Johann diflraction geometry (Fig. 1),
a topograph of the bent crystal can be obtained. The line profile across from the
topograph, the intensity distribution is calculated using Egs. (3) and (4) taking
into account the eflects of the crystal misalignment (x5, ys, and z;), source broad-
ening and wavelength spread of the X-ray emission line, The simulation continues
until the calculated line profile matches the one obtained from the topograph. As a
result, the rocking curve width A0y the peak rellectivity and the status of the crys-
tal alignment are known. Figure 5 illusirates the comparison of the experimental
result and the simulation for a cylindrically bent mica crystal with Ti K, radia-
tion. This method has been proven to be unique for measuring the bent crystal
parameters with a divergent beam from a point X-ray source.

(3) Furthermore, values of zs, ys, and z; can be chosen such that the source
is extended along the line joining the source and the mid-point of the diffractor’s
surface in a direction away from the focal circle (Fig. 1) then X-rays from this
displaced source will reach the diffractor’s surface with relatively small divergence
in both meridional and sagittal directions. The degree of divergence is determined
by the magnitude of the displacement of the source away from the focal circle.
This suggests that Eqs. (1-3) can also describe the X-ray diflraction geometries
with a synchrotron radiation source.

Figure 6 shows the configuration for the application to the synchrotron
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Fig. 5. Comparison of experimental and theorctical results for a mica diffractor of
the Johann geometry: (a) topograph obtained with Ti K, radiation; (b) calculated
topograph based on Afy = £9.95 x 10™*; (c) measured intensity profile through the
center of the topograph parallel to the z-axis; (d) calculated intensity profile which is
the sum of Ka, line (with two peaks) and Ka, line (with one peak).

Focal clrcle

A

Fig. 6. Schematic diagram of a displaced virtual point source for quasi-parallel beam
geometry. zs = dj cos 05 and ys = —d, sin i, where d; is the distance between s and s,
The value of d; is determined by the divergence of the quasi-parallel beam for a given
radius of curvature of the bent crystal.

A

I, 278,
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source, where a cylindrically bent crystal is considered with the radius of curva-
ture being a variable. The parameters 24 and ys, in this case, equal d; cos 0g and
dy sin 0, respectively and d; can be expressed in terms of the radius of curvature
of the crystal R and the distance L,

L . '
dy = Q—R—smOB. ‘ (5)
For a given radiation, and a rocking curve width, the intensity profile on the surface
of the crystal can be calculated by using Eq. (1) with various values of d;. Several
line profiles along the direction of z (z = 0) are calculated and shown in Figs. 7a
and 7b. It can be seen that line profiles become wider, and they split into peaks as
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d, increase from 0.001 to 0.01. The trend continues until the other peak vanishes,
(outside the crystal region of interest), and the remaining peak becomes narrower.
Figure 7b shows line profiles in a smaller scale, which exhibits continuing decrease
in width of the profile until values of d, become larger than 1, which suggests, from
this point, that the profile width will decrease to a finite value when the source is
located further from the crystal.

Fig. 7. Intensity line profiles on a cylindrically bent crystal for different values of d;.
The Bragg angle is 39.64° and Ay = 10~*. (a) d; = 0.001 for solid line, d; = 0.005 for
dot-dashed line, d; = 0.01 for long dashed line, and d; = 0.05 for short dashed line. (b)
dy = 0.1 for dot-dashed line, d; = 0.5 for dashed line, and d; = 1 for solid line. Note
that the scale of (a) is 10 times larger than that of (b).

Figure 8 also illustrates the intensity profiles on the surface of the bent
crystal. The radiation used here is 3.1 keV, the Bragg angle — 39.64°, and the
width of the rocking curve — 10~%. As it is expected when the value d; is 103,
the profile is nearly the same as in the case of the point source. When d; becomes
larger, the profile curves to negative z direction, and the width becomes narrower,
whereas the width wider in z direction. As a result, only a narrow portion of the
crystal in z direction contributes to diflracting X-rays. Clearly, for a given distance
between the crystal and the source, the radius of curvature can be varied in order
to optimize for certain application. If the higher spatial resolution is desirable,
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then the radius of curvature needs to be small, so that the displacement d; is large
(Figs. 8c and d). On the other hand, if the intensity of diffracted beam is the major
consideration, then the radius of curvature should be large and selected in such a
way that d; tends to zero (Figs. 8a and b).

Fig. 8. Intensity profiles on the surface of a cylindrically bent crystal with the same
parameters as in Fig. 7 for (a) d; = 0.001, (b) d; = 0.01, (c) d; = 0.1, (d) d1 = 1 cases.
The scale of z is three times larger than that of z.

3. Measurcments of reflection curves of bent crystal
using double crystal spectrometer

Note that a Gaussian distribution has been employed, so far for the rocking
curve of a bent crystal, which for a perfect crystal, in particular, the deviation
in terms of the width, the peak reflectivity and the shape, may be substantial.
Several investigations have been performed to measure the reflection curves of
bent crystals as well as their integrated reflectivities based upon the Takagi—Taupin
theory of deformed crystal using both dispersive and non-dispersive double-crystal
spectrometer geometries. The well-known expression of the reflected intensity P(f)
is shown in the following:

P(B) = / / / Gla, 6)J (A= 20)Ci [Aol—y(x—)\o)a—ize(,\o)]

xC [:tﬁ F A0, — (/\ - Ao)-a—a/\—;@(/\o)] dad¢d)\, (6)

where C; and Cb, including the rocking curves A0 and the angular deviation from
the wavelength spread, are reflection curves for crystal 1 and 2, respectively. Note
that Af are the same functions as in Eq. (2), but are expressed in angular coordi-
nates in this case. In a dispersive setting, a {lat and a bent crystal are used to form
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an achromatic (n, +n) arrangement shown in Fig. 9a. The flat crystal can be lo-
cated in various positions between the bent crystal and the virtual source ¢, since
the dispersion of the flat crystal does not depend on the distance to the source. The
theoretical rocking curve of the bent crystal can be calculated by using Eq. (6),
and convolution with the flat crystal reflection curve as well as the source broad-
ening due to the finite slit size. Rocking curves were measured reproducibly for a
spherically bent crystal with bending radius, R; = R = 1 in normalized coordi-
nates (a solid line in Fig. 9b). The dashed line represents the calculated reflection
curve of the bent crystal. The adequate agreement, especially for the asymptotic
wing, confirms the reflection curve calculated by using the Takagi-Taupin theory.
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Fig. 9. Measurement of rocking curves using dispersive double-crystal spectrometer.
(a) Experimental sct-up for achromatic rocking curves of bent crystals, (b) measured
rocking curve of a spherically bent crystal (R = 151.7 mm) (solid line) compared with
the calculated reflection curve folded with the instrumentation function (dashed line).

Similarly, a non-dispersive setting of achromatic arrangement with a bent and a
flat crystal was also devised to measure rocking curves of bent crystals. The ex-
perimental set-up is shown in Fig. 10a, and the A(a; — a») value was measured by
changing the radius of the curvature, as well as rotating the bent crystal to find the
smallest separation of the doublets, whicl is shown in Fig. 10b. Once, the optimal
radius of curvature is determined, the rocking curve of the bent crystal can be
measured by rotating the crystal in a non-dispersive fashion, in other words, the
rocking curve is independent of the polychromaticity of the incident beam. The
rocking curve of silicon (400) was obtained as shown in Fig. 10c. In this case, the
advantage of using achromatic arrangen.cnt is evident since the diflracted X-ray
intensity from the bent crystal consists of both K, and Kg, lines.
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Fig. 10. Mecasurement of rocking curves using non-dispersive double-crystal spectrome-
ter. (a) Experimental set-up; (b) Aungular dillerence of K4, and Ko, lines in dependence
of the cylindrical radius of curvate; (¢) Rocking curve of Si{(400) (R = 17.02 m).

4. Crystal anisotropic cffects of bent diffractors
In order to investigate the behavior of bent crystal, the anisotropic clasticity
theory has been applicd to singly and doubly bent crystals. Based on the pure
bending model, the displacement vector uy is expressed as the following:

3 X2 72 3(sz1my + 532M3)
U= ToR, T ok, At ’ o
where
1 my 9o, M2
T{T = 123117? + 1231217')
1 my ma
N = 1233117 + 1282le (7b)

are the characteristic radii of curvature in the meridional and sagittal planes. Ry
and R» are normalized and divided by 212, the diameter of the focal circle. m; and
my are bending moments applied in two orthogonal directions, ¢ is the thickness of
the crystal plate, and s;; arc the compliance tensor components. This displacement
vector expression is similar to the surface equation used for deriving Eq. (2). The
fundamental difference, however, is that the crystal anisotropic properties, in this
case, are taken into account. This implies that the radius of curvature is not only
a geometric quantity, but is the characteristic of the physical properties for a bent
crystal. In cylindrical bending, instead of seiting Rs being infinity, (Table IT) the
effect of the anticlastic curvature in the direclion perpendicular to the focal plane
can be readily calculated from Eq. (7). The anticlastic curvature occurs when the
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Tig. 11. Comparisous of diffracting regions for cylindrically bent crystal geometry with
Ay = 10~* radian between with anisotropic effects (case 1) and without anisotropic
effects (case 2). (a) and (b) are the comparison of case 1 (solid line) and case 2 (dashed
line) for a Si (200) at 95 = 25° and 75°, respectively, and (c) and (d) are for a Si(111)
at 03 = 25° and 75°, respectively.

signs of R; and Ry are opposile, in other words, the ratio of R; and R, which is
determined by the values of s;;, is negative. '

For a given silicon crystal, the ratios of R;/R2 in the case of (200) and
(111) reflections are calculated as —3.589 and —3.811, respectively. The anticlastic
curvature occurs in both cases with similar values, which suggests that Ry is
insensitive to the crystal orientation. As an example, Fig. 11 illustrates the contours
of the diffraction region on the crystal surlaces of (200) and (111) reflections for
a cylindrically bent silicon crystal, which are compared to the case of Ry =1 and
R2 = oo. In both cases, the narrowing of the diffraction region in the z direction
are observed.

5. Lincar dispersions of various diffraction gcometrics

For different focusing geometries, it is desirable to be able to calculate their
linear dispersion analytically for a given radiation and a radius of curvature. The
inverse of the linear dispersion, (da/dA)~1, can be obtained as the following:

dx dAO(z, zo)
& = oW ——
dx dA0(zo, 2)
a; = COLOBA———(‘(IZ . (8)

The differentiation of A¢ with respect to  and z can be readily calculated from
Eq. (2). For a given crystal and a perfect alignment, namely, 2, = 31 = z; = 0,
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the resolution depends on the size of the diffractor, the bending radius, and the
wavelength of the radiation. For the sake of the illustration, only the spherically
bent crystal is calculated here. Using Tables I and 11, Eq. (8) can be calculated as
the following:

d\ _ cot®OpA 3 . cotlpzj
&= R (”5“““ 'T)’

dA  cot30pA

&~ 3R % ©)
where R is the radius of the focal circle, and 2y and zp are constants. It can be
scen that the linear dispersion in the plane of the focal circle, dz/d) increascs, as
0 becomes large, which is evident for the case of close to the normal incidence.
The value of dA\/dz is inversely proportional to tlie radius of curvature, which is
consistent with the dispersion plane of the Johann geometry. If we let 2o = 0, then
the value of dA/dz is finite for a given value of 2, which is, in fact, related to the
rocking curve width. Evidently, the improvement of the linear dispersion can be
achieved by limiting the size, or the diffracting region on the crystal surface, to
the region wherc the intensity distribution is appreciable. It is more interesting to
examine the term dA/dz in the direction perpendicular to the dispersion plane. If
the value of zq is close to zero, then dA/dz tends to zero, in other words, the linear
dispersion becomes very large. Certainly, this is an ideal case, since, in practice, it
is difficult to locate the detector at the exact position of g = 0 accurately. It is
evident, however, that the dispersion in z direction is much larger than that in z
direction. It should be cautioned that this conclusion is based upon the case where
the crystal is perfectly aligned. If the misalignment parameters are non-zeros, then
the value of d\/dz is finite, even when zo = 0.

6. Conclusions

A procedure for analytical calculations of X-ray intensity profiles on the
bent crystals’ surface and on the image plane is described. For various focusing
geometrics, it allows one, in genceral, to obtain analytical formulae for evaluating
the shape, the width, and the peak of the intensity distribution. Moreover, it is
demonstrated that this approach is applicable not only to a point source, but
also a quasi-parallel X-ray beam, such as X-ray plasma sources and synchrotron
radiation sources. Based upon the analytical formulae, it is possible to calculate
linear dispersion quantitatively, the spectral and spatial resolutions for different
bent crystal geometries, which is invaluable to various X-ray spectroscopic exper-
iments.

The limitation of the procedure, however, is the assumption of the Gaussian
distribution which contains no information of X-ray scattering process within the
bent crystal. Using Takagi—Taupin dynamic theory of bent crystals and achromatic
double crystal spectrometer, we have been able to measure reflection curves of bent
crystals. As a result, the integrated reflectivities of the bent crystals may be calcu-
lated. The application of anisotropic clasticity theory to bent crystal provides the
information of the anisotropic crystal behavior when a crystal is bent to a certain
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form with respect to its orientation. It is demonstrated that using a pure bending
model, the occurrence of the anticlastic curvature is a direct consequences of the
anisotropic behavior of cylindrically bent crystals, which is accurately described
by the theory presented here. For doubly curved crystals, a more practical model,
e.g. large deflection, should be employed to take into account of the strain due to
the stretching in the neutral bending axis.
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