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The existence of a strong spatial localization for the efficiency of cross-
-polarization by single quantum transition in the presence of a main field
gradient was evidenced. The case of the solids with strong dipolar interac-
tions has been analyzed. The slice profile of the translerred polarization was
evaluated for different cross-polarization procedures. The spatial localization
is superior as compared with the spin-locking slice selection method.

PACS numbers: 76.70.—r, 76.70.Fz, 33.35.—q

1. Introduction

Due to the spatial resolution of images ultimately limited by sensitivity,
most NMR imaging experiments have been done on II. Ilowever in recent years
an increase in NMR imaging techniques into the realm of solid materials has been
observed.

The proton linewidth of solids is broadened by strong homonuclear dipolar
interactions which has to be removed for an cfficient spatial encoding by the mag-
netic field gradient. In this respect a variety of line-narrowing methods based on
coherent averaging multiple pulse [, 2], magic angle sample spinning [3], magic
angle narrowing in the rotating frame [4, 5] and combinations of them, has been
considercd [6]. Alternative approaches using RF ficld gradients have been sug-
gested [7, 8]. The NMR images of solids can be obtained by using the high order
multiple quantum spectra to incrcase the line separation due to applied gradient
by a factor of n equal to the number of Larmor {requency quantum:characterizing
the obscrved spectrum [9, 10].

Another class of techniques is based on Fourier spatial phase encoding using
free induction decay [11], solid echo [12, 13], Jeener-Brockaert pulse sequence
[13, 14], magic and rotary magic echoes [15]. NQR imaging of quadrupolar nuclei
was also studied [16, 17].

The problem of severe liomogeneous broadening due to homonuclear dlpolar
coupling can be eliminated by examining magnetically dilute spins in solids. In this
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respect NMR imaging of dilute 1/2 spin !*C isotope has been published [18-20].
The dilute nuclei heterogencous line narrowing is achieved by a combination of
high-power proton decoupling combined in some cases with magic angle sample
spinning and deconvolution. Of course, the sensitivity limitations due to natural
abundance of ®C in typical solids can be severe and hence the techniques that can
enhance %C spin polarization are of interest. These are based on rotating frame
heteronuclear polarization transfer using spin-locking procedure alone [18, 20] or
in combination with T spin polarization via dynamic nuclear polarization [19].

Recently it has been pointed out [20] that the NMR images of rigid solids
13C obscrvation can yicld images of nearly the same quality as Y[ observation. The
small homogeneous linewidth, high-Q probes and narrow-band receivers associated
with 1%C NMR compensate to a large extend for the low natural abundance nuclei.
Additional chemical information can be gained by recording the NMR imaging of
dilute spins in solids.

Considering '3C NMR imaging of solids as a viable alternative to 1[I NMR
imaging in solids, in this paper we intend to analyze the behaviour of polariza-
tion transfer methods used for increasing the dilute spin polarization operating in
the presence of laboratory frame gradient. The spatial dependence of polarization
transfer process on various cxperimental conditions could be exploited for NMR,
imaging and volume sclective spectroscopy experiments.

We shall concentrate licre on the case of strongly dipolar coupled spins in
solids with abundant I = 1/2 spins and dilute S = 1/2 spins (1%C, 1N, 2%i,
31p, ete.). In the following we will present the results which introduce a new di-
mension — the spatial one — in the ficld of heteronuclear polarization transfer
dynamics. A preliminary discussion of this spatial localization was presented in
Refs. [21] and [22].

2. The Hamiltonian and reference frame

In this section we recall some details to the llamiltonian and quantum-me-
chanical interaction representation which occur for the polarization transfer in the
rotating frame experiments [23, 24].

We discuss the situation only in which we may neglect the diffusion of the
spins and spin-lattice relaxation times are taken infinitely long,.

The most common spin system encountered in the polarization transfer ex-
periments contains two spin species I and S with different magnetogyric ratios 77
and ys. The sample contains Ny and Ng spins and in general Ny > Ng.

We shall consider in the following the experimental situation which is en-
countered in the laboratory frame NMR imaging experiment [25], i.c. the sample
is placed in a large static homogencous magnetic ficld gradient Go. In order to
simplify the problem but without loss of generality, the magnetic field By and
magnetic ficld gradient Go will be applied along the z-axis. The case of rotating
frame spatial encoding, using radiofrequency field gradients [26, 27] will be discuss
elsewhere.

The high ficld polarization transfer Hamiltonian defined for a z-slice in the
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laboratory reference frame is

H(z, l) = II; (:) + ][5(::) + 1[[5(:) + Um-‘(l). (1)
The Mamiltonian for the abundant I spin system is defined as

111(2’) = ]f]z(:) + ””(.‘:), . (2)
where the Zeeman Ilamiltonian is ’

I’I]z(z) = —[w01 + A.Q[(.‘:)]Iz(:) (3)

with wor = v By and A$2/(z) = 41 Gy, 2. The I'spin operator is defined for z-plane
as

I(z) = I,/ p(r)dady,
z—slice

where I; is the spin opcrator for an individual “” nucleus and p(r) is the den-
sity operator. Without loss of gencrality we can include the contribution of the
I-chemical-shift ITamiltonian in the Zeeman term Hjz(z). The term Hy(z) de-
scribes the localized spin-spin interaction between I spins. For polarization trans-
fer experiments in solids the all sample dipolar Hamiltonians Hyr = 3, Hrr(z)
contribute in principle to the spin dynamics. If we consider a particular z-slice with
macroscopic dimensions and the =3 spatial dependence of the dipolar interaction
it is a good approximation to assume that the spin dynamics is determined only
by the dipolar lTamiltonian for the z-slice.

The spatial localized lamiltonian ITg(z) which characterizes the dilute S
spins is

IIs(2) = ITsy(2) + Hss(2), ‘ (4)
where the terms have the same meaning as in Eq. (2).

The interaction ITgs(2) between the S spins is ignored because of their low
abundance.

The last term of Eq. (1) which describes interactions of the spin system with
linearly polarized radiolrequency magnetic fields of amplitudes 2B,y and 2B,g,
and frequencies wy and wg, respectively, has the form

Hgp(l) = 2wyl coswil — 2w 55, coswst, (5)
where wir = v/ B)1r and wis = ysB1s. The total spin operators are I=3"; I; and
S =", Sm, respectively.

The adiabatic demagnetization in the rotating frame (ADRF) [23] can be
taken into account by considering a continuous variation in the amplitude of the
radiofrequency ficld.

The time evolution of the statistical ensemble composed of many identi-
cal particles can be described by a density operator p(t), which satisfies the
Liouville-von Neuman equation

1249 fiyp0), (6)
where we denoted a Liouville operator corresponding to an operator 0 by 0.

The total ITamiltonian and whole sample density operator can be written

Zmax

H(t) =) H(z,1) )

Zmin
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and

Zmax
p(t) = Z p(z:1), (8)
Zmin
where zmin and zmax define the dimension of the sample along the z-axis.
With a good approximation the spin interaction between different z-slices
(or volume elements) can be neglected and this together with a very slow spin
diffusion leads to the spatial localized spin temperature [28]. Within this limit we
can write

[11(',t), H(z, )] =0 (9)
and

(I, t), p(z,0)] = 0 (10)
for z # 2/

Ilence the Liouville-von Neuman equation can be written as a linear super-
position of local density operator equations

ig%‘—) = [1(z,0)p(z,1). (11)

The rotating frame heteronuclear polarization transfer is conveniently de-
scribed in the double tilted rotating frames. In this quantum mechanical represen-
tation the local density operator evolves under the equation

.Oprr(z,t ~

I—P—”f%—l = Hrp()prr(z,t), (12)
where

prr(z,t) = TRp(z,1) (13)
with R = R;Rs, T = TiTs and

Ry = exp [—iwp L(2)]; Rs = exp [~iwsS:(2){]; (14)

Ty = exp [i01(2)1y(2)]; Ts = exp[i0s(2)S,(2)]. (15)
The local polar tilted angles are defined as

0r(z) = tan™! [ Wil ]

1) wor —wr + A82(z) (16)

and respectively

0 = t¢ -1 wis
5(2) = tan [wos s AT (17)

The relevant Iamiltonian in Eq. (12) is

Hrp(z) = TRIN+i(TR)(TR)*. (18)
Using Eqgs. (1)-(5) and Eqs. (12)-(18), we finally obtain ‘
Hra(z) = —wem,1(2) I:(z) — werr,s(2)S5(2)

+Pa(cos 0r(2))I17(z) + I, (2). ‘ (19)
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In the above equations the rotating and tilted rotating frames axes are de-
noted by (x, y, z) and (&, g, Z), respectively. V
For the z-slice, the eflective frequencics are defined as

werr,1(2) = [wi] + (Awr + AR2y(2))7] ',

Wetr,5(2) = [wls + (Aws + As(2))?] ", (20)
where Aw = wg — w for I and S spin systems. '
The localized IS dipolar coupling Ilamiltonian, which can be considered as
a perturbation, has the form
z—slice
Hp(z) = cos0;(z) cosOs(2) Z bimI;5Sms

i,m
z—slice
+sin0;(z) sin0s(z) Z bim Tiz Sz
i,m
z—slice

—sin 0;(z) cos 0s(z) Z bim iz Sinz

i,m
z=slice

—cos 0y(z)sin0s(z) Z bim Iiz Sz, (21)
i,m

where b;,, are the heteronuclear coupling constants.

3. Spatial localized polarization transfer dynamics

In order to analyze the heteronuclear polarization transfer dynamics [29-31]
in a solid, subject to a main magnetic ficld gradient oriented in a particular z-direc-
tion, we introduce the z-slice observables. In our case these are represented by the
thermodynamic coordinates defined as

(Qi(2)) = Te{Qirr()prr(z, )}, (22)
where Q; rr (i = 1,2) are the relevant quantum-mechanical operators for each of
the systems involved in the polarization transfer process.

The spin dynamics can be analyzed in two extreme conditions. The first
one corresponds to the spin-locking procedure (SL) {23]. In this case the spatial
localized observables are represented by the Hamiltonians

Q1(2) = —werr, 1 (2)I:(2) + Pa(cos 0,(z)) H (),

Qa(2) = —werr,s(2)S:(2)- (23)
These two spin subsystems arc coupled by the Tlamiltonian I,(z) given be Eq. (21).

The second procedure corresponds to a low-effective field condition for I spins
and it is achieved by adiabatic demagnetization in the rotating frame (ADRF) [23],
or by a Jeener-Brockaert pulse sequence [32]. Thus the observables of interest in
the ADRF case are given by Hamiltonians

Ql(z) = 11?1(3)1 Q'l(:) = _wcﬂ',ssz(z) (24)
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and the coupling MMamiltonian, Eq. (21), can be obtained by considering that the
tilt angle 0y = 0.
We can define new z-slice thermodynamic coordinates

Bi(z,0) = (Qi())/Tr {Qi (=)} (i=1,2) (25)
which in the high-temperature approximation have the dimensions of inverse spin
temperature (kg = 1). The validity of the spatial localized spin temperature in
solids has been discussed in Ref. [28].

Suppose now that we are interested in the polarization transfer dynamics
of dilute spins [33]. In this case the following transport equation for the local
thermodynamic coordinate is valid

(?,Bg(z,t) - ﬂl(zit)_ﬂ‘l(zxt)’ (26)
ot T15(2)
where the spatial localized parameter, 773 (z), characterizes the polarization trans-
fer rate for the z-slice in the sample.

Equation (26) describes the dynamics of polarization transfer in the long
range time domain, i.e. for { 3> 7., wherc 7¢ is the corrclation time for the dipolar
fluctuation of the I spin system, but not in the time region of transient oscilla-
tions [29], for the strong dipolar coupled spins or in the case of solids with resolved
dipolar structure [34, 35].

Within the limit of a very short corrclation time the spatial localized polar-
ization transfer rate [29] for the SL casc is ‘

T = % sin? 0 (2) sin® 0s(2) M s 1 Jo (Awer(2)). (27)
In the case of ADRF procedure [29] we have

T[_sl (z) = sin> 05(2)1\[3,51 (.‘;’)J; (werr,s(z)), _ (28)
where M s;(z) is the local Van-Vleck second moment of the magnetic resonance
line determined by the cross-coupling dipolar interaction. The spatial localized
Hartmann-ITahn mismatch is Awer(z) = werr,s(2) — wen,1(2)-

Equation (27) is valid in the high effective field for the SL case, i.e. wer,1(2),
wert,s(2) > wrLi(z), where wyf(z) is the rotating frame local field for the z-slice. It is
also valid only for 0;(z) values different from the “magic angle” 0,,,; = cos"l(3‘1/2)
for which the memory effect in the thermal bath becomes important in the case of
dipolar interactions. For this “magic z-slice” which could occur in the sample as a
result of the interplay between the values of magnetic ficld gradient, ofl-resonance
set, RT field strength and the dimension of tlic sample, a coherent exchange of I
and S magnetization takes place.

The spectral density functions which occur in the expressions of the polar-
ization transfer rates, (Eqgs. (27) and (28)), are given by

Je(w) = '/000 dr cos(wr)Ci(T),

J(w) = /000 dr cos(wt)C; (1), ' (29)
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w'here Cz(r) and C;(7) are the dipolar fluctuation normalized autocorrelation func-
tions [29]. It has been proved [29] that for small values of time the autocorrelation

functions Cz() and C;() have a Gaussian [31, 36] and a Lorentzian [30, 37, 38

character,

Co(1) = exp{—~7%/72} (30)
and respectively
1
Cz(T) 1+T /T" (3]‘)

The correlation time is taken to be 7. = (2/M-_>)1/ 2, where M is the second
moment of the corresponding spectral density function which can be expressed as
a function of lattice sums [29]. This dipolar correlation time has been evaluated
for some crystals [29, 37, 39] and powders [30, 38].

From Egs. (27)-(31) for the localized polarization transfer rate we obtain
the following approximate expressions for the SI, procedure:

y )2

Tis(z)™ '~ —‘gj sin? 0;(z)sin® 05(z) Ma,s(2)7c exp [-— A—wiril—(”)i] (32)

and for ADRF »

Trs(z)" ' = ism 20g(2)Ma,57(2)Tc exp [—werr,s(2)7e] - (33)

We can define the normalized spatial localized polarization transfer rate by
r = T;5 (2)/Tr5(0). 11 the sample is homogencous, i.e. Ma, sr(z) = Ma,s1(0) for
any z-slice and the RF fields arc applied on resonance, the r-functions have the
form

r = sin’® 0y(z) sin® 05(z) exp {__ [Awgi(z) — Elwlf ~ wis)’] 73} (34)
for SL and
r = sin® 0s(2) exp {[werr,s(2) — w1s(2)]7} (35)

for ADRF, respectively.

The normalized polarization transfer rate for ADRF, Eq. (35), is valid for
any position in a solid with strong nonlocalized dipolar interactions. Equation (34),
which describes the ST procedure, is not valid at the “magic position” or “magic
slice” Zm = B11/(Go: tan Oyy) for which the transfer process is coherent [35]).

To evaluate the inverse spin temperature spatial distribution for the S spins
we have to consider the local coupled rate equations which can be written in a
matrix form

06(z,t
W) . _ pepe0), (36)
where any spin-lattice relaxation processes were neglected and
B(z, l)] '

z,t) = , 37

80 = [ (")
ea()T75 (2) —ea()T5 (2)

A(z) = . (38)

TR TR
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In Eq. (38), the ratio between the local hicat capacities of S and I spins [23] was
noted by €,(2) with a = SL or a = ADRF.
The time evolution of the inverse cffective spin temperature for the S spins

can be obtained from Eqs. (36)—(38)
ﬂz(z’t) =:3f(:) {1 — exp [_t/Tls(Z)]} ’ (39)

where f(z) is the localized inverse spin-temperature reached by both spin systems.
At the beginning of the contact period f2(z,0) = 0.

4. Spatial localized transferred magnetization

During the hetcronuclear polarization transfer a Zeeman order is created
in the tilted rotating frame of S spins. The longitudinal local S-magnetization
produced at the moment ¢ along the eflective field is

Mg(z,t) = %75.5’(5 + 1)fBa(2, t)Ns(2)werr,s(2) | (40)

with the inverse spin temperature B2(z2,t) given by Eq. (39).
The detected instantaneous S-spin magunctization is

Ms(z,0)aer = Ms(z,t)sin0s(z). (41)

To evaluate the transferred magnetization we hiave to consider the spatial
localized thermodynamics of the process. The localized equilibrium inverse tem-
perature for both spin systems S (=) is given by the following relation [23):

_ ,3[’;;(2’,0)

IBI(Z) - (1 +Ea(:))’ (42)
where Bra(z,0) is the local inverse spin temperature of I spins at the beginning
of polarization transfer process.

We shall consider that the experiment was conducted so that a spin-lock
pulse sequence was applied for the slice selection [40-42], before the polarization
transfer process begins. In Figs. 1a and ¢ we represent the pulse sequences which
use the slice selection by spin-locking applied previously to the SI. and ADRF
procedures. Also another possibility is presented in Fig. 1. In this case no slice
selective single or composite pulses are applicd before the ADRF cooling procedure.

The spatial profile of inverse spin temperature after a spin-lock pulse se-
quence is [28] as follows:

Br,s2(2,0) = Brwowi r/wi 1(2), (43)
where B, = 1/(ksTL), 11, is the lattice temperature. A 7/2-dclta preparation pulse
was considered. The normalized spatial distribution of the spin-locking cooling
efliciency is described by the Lorentzian function [28]

S(Z) — ﬁ[,SL(Z’O) — 1
Br,sr(0,0) 1+ (Go:z/Bir)?’
where we suppose that the strength of RF ficld is bigger than the local field.

For the ADRF procedure (cf. Fig. 1b) we can write

Br,aprr(2,0) = BLwo/wri(z) (45)
an expression derived using entropy invariance [43].

(44)
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Fig. 1. A schematic representation of the heteronuclear polarization transfer in solids
using the SL and ADRT procedures applied in the presence of a constant main magnetic
ficld gradient. In (a) the slice selection together with the spin-locking pulse sequence was
used before the polarization transfer begins. In (b) the ficld gradicent is applied after the
dipolar order was created by the ADRF'proccdure. The presence of the gradient does
not affect the dipolar order. In (c) the slice selection together with the spin-locking pulse
sequence was performed before the ADRF procedure was applied in the absence of the
field gradient. This pulse sequence also includes the Zeeman-storage (w/2)—; pulses for
I and S-magnetization. Such an optional S-storage pulse can be used for (a) and (b)
cases.

If the slice selection using the spin-lock pulse sequence is applied in combi-
nation with the ADRF procedure {rom Egs. (43) and (45) we get

B aprr(#,0) = Br,sL(z,0)Br,apRrF(2,0). (46)

The above equation is only approximate valid because, in general, Zeeman-
-storage (7/2)_,-pulse, (cf. Fig. 1c), distorts the profile of magnetization produced

time
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by SL-pulse sequence. To simplify the discussion, this distortion will be neglected.
The local normalized S-spin dectected signal for on-resonance excitation is
defined by the following equation:
z,t '
s; = Ms(z, Daer )det. (47)
Mg(0, t)get :

From Eqgs. (40) and (41) for the spatial profile of the transferred S-spin
normalized magnctization we obtain
_ Pa(z,t) Ns(z2)
s 18
* = 0,0 Ns(0) “o
Il €a(z) < 1 and from Egs. (39), (40) and (47) we can write for the SL case
(cf. Fig. 1a)

w%l’ 1 exP(_t/T[S(:)) (49)
(werr 1 (2))% 1 —exp(=t/T15(0))” ’

The above expression is also valid [or the ADRF procedure combined with
the spin-locking slice selection (cf. Fig. 1¢), if we consider an homogeneous sample
again for which wrr(z) = wrs(0). Of course, the functional dependence of signal
profile on z will be different compared with the SL case, as a result of different
position dependence of polarization transfer rate. For ¢ 3> Trg(z), the signal profile
is the same for the SL and ADRT procedures and coincide with the spin-locking
slice selected profile.

For the procedure presented in Fig. 1D, the S-magnetization profile can be
obtained from Eqs. (15) and (46). For an homogeneous sample we have

S, = 1 —cxp(—l/fY:[s(z)). | (50)
1 — exp(—t/T7s(0))

The spatial selectivity of the polarization transfer is related directly to the
position dependence of the polarization transfer rate vanishes in the limit of a very
long contact time.

In the following we shall analyze the case when the rotation properties of
@ /2-{lip-back pulse (/-pulse) is allccted by the presence of the gradient. It is casy
to show [28] that the stored magnetization is related to the magnetization produced
by the polarization transfer process by the relation

Ms(z,)stored = F(2)Ms(z,1), ' ‘ (51)
where “llip”-function F'(z) is

F(z) = sin0s(z)sin O(F)( )sm[wf,[r)s )7)

s, =

+ cos 05(2) sin® 0(’?)(7) cos[w(h oIt 5 z)7] + cos 0s(z) cos® O(P)( z). (52)

The polar tilt angle 0 ( ) and the cflective-frequency w n.S(z) for the
F-pulse are given by the same relations introduced before for the polarization
transfer pulses (Eqs. (17) and (20)). The I‘-pulse is applicd on-resonance, i.e.
O(P)(O) = 7/2 and has a 7/2-rotation angle for the slice z = 0, i.c. wgg)s(ﬂ)r =
gg)‘r = w/2, T — being the pulse duration.
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The normalized Zeeman-stored spatial dependent magnetization can be de-

fined by the expression
8,5 = AlS(z,l)stored 53
A'[S (Oy t)stored ( )

Using Eqs. (41) and (47) in Eq. (53) we obtain finally

wer.s(2
S, = F(z)—%isﬁs;. (54)

5. The profile and width of the excited slice

Using the computer simulations we intend to analyze the spatial distribu-
tion of the polarization transfer rates, the detected signals and the Zeeman-stored
magnetization. We shall compare the spatial selectivity with that of the spin-lock
composite pulse sequence. The on-resonance excitation for both spin species is
suppose to be fulfilled.

TABLE
The dipolar spin corrclation times 7. used
for polarization rate evaluation in the case
of the SL and ADRYF procedures.

Sample T (18]
SL ADRF
Caly (Bo || [111]) | 102 [29] | 81 [29]
Adamantane 140 [38] | 122 [37, 38]

In the case of spatial encoding using main magnetic ficld gradient the nor-
malized transfler rates for Cal's crystal with orientation Bg || [111] and adamantane
powder (Ciollig) (where 43Ca and 13C = S, 1°F and 'Il = I, respectively) were
evaluated using the valucs of dipolar correlation times given in Table. The spatial
dependence of the »-functions, Eqs. (34) and (85), for these two model samples
in the case of the SL and ADRF procedures were represented in Figs. 2a-d for
different values of mismatch Hartmann—-Halin (ITIT) effective frequency Aveg and
effective frequencies of S-polarization contact pulse.

We remark that the polarization transfcr rates have a strong spatial depen-
dence. Tlic profiles are different for the SL and ADRF cases as a result of different
functional spatial dependence evidenced by Eqs. (34) and (35). The profiles are in
general non-rectangular but they are close to this shape in some special cases (sce
Fig. 2c for Aver = 0 klz). The profiles depend on the sample structure.

For CaFy crystal the dipolar correlation time depends on the crystal orien-
tation [29, 39]. For instance we have the computed ratios 7c([111]/7([100]) = 2.76
for SL-case and 7.([111])/7<([100]) = 1.80 for ADRF. We expect (see Egs. (34)
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Goz= 50 G/em

Goz* & 6/cm

()

Goz= 10 G/em

\)LSII(HII 5

]
Zzim m} 4 z tm ™

Fig. 2. The spatial dependence of the normalized polarization transfer rates r for Cal
crystal with orientation By [ [111] ((a) for SL and (b) for ADRT) and powdcry adaman-
tane ((c) for SL and (d) for ADRF) as a function of HH mismatch parameter Avegy and
polarization transfer S-pulse strengih v;s. The magic slices are presented in Fig. 2c.

and (35)) a stronger spatial dependence of the normalized polarization transfer
rate for SL compared with the ADRTF procedure, if the crystal orientations are
modified.

The magic-slice positions are given by the equation Zy, = £B;;/(21/2G;)
and are present only for the SL procedure. The r-functions are not valid at these
positions.

In Fig. 2a the magic slices occur at the coordinates Z, = +14.14 mm, and
are out of the supposed sample spatial range. For stronger Gp, gradient the magic
slices occur inside the sample (see Fig. 2c). For all these cases Byy = 10 G.

The half-width at the half-intensity for the normalized polarization transfer
rates profileg versus the main field gradient strength is presented in Figs. 3a and b
for the SL and ADRF procedure, respectively.
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Fig. 3. The half-width at the hall-intensity of r function versus the gradient strength
Go:z, for SL (a) and ADRT (b). The solid lines correspond to adamantane and dashed
lines to CaF; crystal. For curves A, B, C the Ilartmann~Ilahn mismatch is Aveg = 0,
4 and 8 kllz and v1s = 3, 5 and 7 klIz, respectively.

We can sce that the polarization transfer process becomes strongly localized
with increasing gradient strength. In the case of the SL procedure the localized
efficiency of polarization transfer is only a little higher for CaF3 crystal compared
with adamantane but it is vice versa for the ADRF procedure.

The normalized spatial distributed S-magnetization generated as a result
of the polarization transfer process was represented in Figs. 4a and b for the SL
and ADRT procedures as a function of ITII mismatch and the S-pulse strength. A
contact transfer pulse of duration ¢t = NTrs(0) with N = 3, was considered. The
profiles of transferred transverse magnetization are more rectangular compared
with the profiles of the transfer rates. At the position of magic slices the function
s, does not describe the transferred polarization for the SL case.



420 D.E. Demco, I. Ardelean

Ggz= 10 G/em (a) Gpz= 10 G/cm

rl

32

Fig. 4. The spatial dependence of the normalized S-spin polarization transfer detected
magnetization s; for powdered adamantane in the case of the SL (a) and ADRF (b)
procedures for different IITT mismatch Aver and polarization transfer pulse strength v)s.
The magic slices occur at the position z, = £7.07 mm.

The half-width at the half-intensity of prolfiles s, versus the gradicnt strength
was represented in Fig. 5a together with Az value of the slice selection produced
by the spin-lock pulse sequence with a RF ficld of By =10 G.

We can see that for all experimental conditions the spatial regions, in which
S-spin magnetization is gencrated, are narrower compared with the regions excited
by the spin-lock pulse sequence. The most cfficient procedure in this respect is
SL, with the higher value of HI mismatch. The most efficient ADRI" procedure
corresponds to one with smaller value of S contact pulse strength.

When we discuss the spatial efficiency of transfer magnetization we have
to consider the fact that the maximum transfer rate corresponds to the matched
HIII condition (i.e. Avesr = 0) and at the same time the maximum magnetization
transfer occurs when the I and S spin rescrvoirs have the same heat capacity [23].
These two conditions cannot be fulfilled simultaneously.

If an on-resonance {lip-back pulse with the same strength as the polarization
transfer S-pulse is applied to store the S-spin magnetization along the By field the
spatial dependent stored polarization is described by function s,, (see Eq. (54)).
The half-width at the half-intensity of this stored polarization is represented in
Fig. 5b.

The prolile of stored magnetizationis in general difTerent from the transferred
magnetization profile as a result of interplay of two factors: (i) the effect of gradient
on the rotation properties of the flip-back pulse and (ii) the spatial encoded polar
tilt angle of transferred magnetization. The comparison of Figs. 5a and 5b shows
that these effects are not essential for our specified conditions. Consequently, the
stored spatially distributed magnetization reproduces in a good approximation the
spatially transferred magnetization behaviour.

The spatial selectivity of the polarization transfer is improved if we sacrifice
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Fig. 5.  The half-width at the hall-intensity of s; versus gradient strength for SL-case
(dashed line) and ADRF-case (continuous line) was represented in (a). The same rep-
resentation (b) was done for s..-stored magnetization function. For all the curves the
contact time was t = NT1s(0) with N = 3. In the figures (a) and (b) Aveg =0, 4, 8 kllz
and »is = 3, 5, 7 kllz correspond to curves A, B, C, respectively. Also the half-width

at the half-intensity of the slice selection function s(z) was represented (dashed-point
line) in (a) and (b) for a lock-field strength of By = 10 G.

a part of produced S-spin magnetization by reducing the contact time between I
and S spins. In such condition the transfer magnectization around the z = 0 slice,
for which the transfer rate is maximum, does not have time to occur.

We can see {rom Fig. 6a that the sclected slice by the SL polarization transfer
process is approximately one order of magnitude smaller than the cxcited slice
produced by the spin-lock pulse sequence. Even if the transfer magnetization profile
is not rectangular, the corresponding region is well defined as compared with the



422 D.E. Demeco, I. Ardelean

4 NORMALIZED
SiGNAL

Lime s 2

PRI A— . S
-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0
: Z [mm]

) {NoRMALIZED
SIGNAL

———— Ty 1
-150 -10.0 -5 5.0 10.0 15.0

7 [mm]
Fig. 6. The spatial distribution of the normalized S-spin detected magnetization (solid
lines) for SL (a) and ADRF (b) polarization transfer experiment in which a slice was
sclected before the magnetization transfler (see Tigs. 1a and c). A contact time t =
NTrs(0) for N = 3.0 with Aveyr = 8 kllz and vy s = 5 kllz was used. The spin-lock slice
profile is also represented (dashed-point line) for spin-lock pulse strength Bir = 10 G.
The gradient strength is Go: = 10 G/cm.

Lorentzian behaviour of the excitation profile produced by the spin-lock pulse
sequence [28]. We consider in these representations that Byy = 10 G which is
bigger than the rotating frame local field in adamantane (By, = 0.55 G).

The same gencral behaviour takes place in the case of ADRF polarization
transfer but the produced slices are few times larger compared with the width
produced by the SL polarization transfer. This is evident from Fig. 6b. In this figure
we represent the normalized spatial dependent detected transler magnetization
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function s:/ = s(2)s;, where s(z) is the spatial profile of the sclected slice produced
by the SL-pulse sequence (Eq. (44)) and s, is the spatial profile of the ADRF
coherence transfer process (Eq. (50)). The slice profile described by the function
sz corresponds to experimental strategies represented in Fig. le.

6. Conclusions

Heteronuclear polarization transfer in the rotating frame represents a viable
method for spatial localization, which can be naturally integrated in the pulse
sequences for imaging and volume sclective spectroscopy of solids. If we consider
a volume sclective experiment three different types of strategy could be imagined:

(i) The transverse polarization or dipolar order of abundant I-spins can
be produced in a localized volume using narrow band excitation pulse sequence
applied in the presence of magnetic field gradients. This selected region with lower
I-spin temperature can be used to transfer magnetization to rare S-spins in the
same region. The polarization transfer process takes place in the absence of the
field gradient.

(it) At the beginning of the cxperiment the magnetization is transferred
to the dilute S-spins uniformly in the sample. The localized region for S-spin
magnetization can be selected using the “liquid state”-procedures in the presence
of abundant spin decoupling.

(iii) The transfer of polarization and the spatially selective excitation can be
performed in an integrated manner. In this latter case it is essential to understand
the polarization transfer dynamics in the presence of a field gradient. This method
has the advantage of lower RI" power dissipation and possibility of performing a
much more eflicient slice and finally volume sclection.

A detailed theoretical analysis and compuler experiments were performed
for crystalline and powder samples for different cooling procedures of abundant
spins.

The polarization transfer rates show a strong spatial dependence which is
mainly related to the spatial encoded Hartmann-ITalin mismatch. This spatial
dependence is very strong only for a limited contact time between spin systems.
The profile of the transferred S-magnetization is not rectangular but the excitation
is well localized as compared for instance with the homonuclear spin-locking pulse
sequence [28].

The polarization transfer in a heteronuclear rotating frame experiment proved
to be an efficient method of the slice sclection.

The selected slice is generally narrower for the SL procedure compared with
ADRPF. This is a direct consequence of the quasi-Gaussian cross-polarizatiom spec-
trum as compared with the quasi-exponential cross-polarization spectrum in the
ADRF case.

The width of sclected slice becomes smaller as Hartmann—Hahn mismatch
increases and is becoming bigger for stronger contact pulse strength in the case of
the ADRF cooling procedure. '

It was shown that in the case of the SL-cooling procedure for some values of
the experimental paramcters a magic-slice can occur in the sample. A polarization
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transfer process with a limited number of coupled spins takes place for this position
and the shape of the sclected slice should: be locally modified. The presence of the
magic slice in the sample region can be avoided by a proper selection of contact
pulse strength, field gradient and sample dimension.

For a heterogeneous sample the spatial distribution of llomonuclear and het-
eronuclear dipolar intcractions and rotating frame relaxation rates will induce local
variation in the width and slice profile. Thesc cflfects can be evaluated using the
presented theory.

These results have implications not only for volume localized NMR spec-
troscopy but also for the NMR imaging of magnetically dilute nuclei in solids.
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