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The existence of a strong spatial localization for the efficiency of
cross-polarizationbysingle quantum transition in the presence of a main field

gradient was evidenced . The case of the solids with strong dipolar interac-
tions has been analyzed. The sfice pro fi le of the transferred polarization was
evaluated for different cross-polarization procedures. Tłe spatial localization
is superior as compared with the spin-locking slice selection method.
PACS numbers: 76.70. - r, 76.70.17z, 33.35. —i

1. Introduction

Due to the spatial resolution of images ultimately limited by sensitivity,
most NMR imaging experiments have been done on 1H. However in recent years
an increase in NMR imaging teclniques into the realm of solid materials has been
observed.

The proton linewidth of solids is broadened by strong homonuclear dipolar
interactions which has to be removed for an efficient spatial encoding by the mag-
netic fleld gradient. In this respect a variety of line-narrowing methods based on
coherent averaging multiple pulse [1, 2], magic angle sample spinning [3], magic
angle narrowing in the rotating frame [4, 5] and combinations of them, has been
considered [6]. Alternative approaches using R.F. field gradients have been sug-
gested [7, 8]. The NMR images of solids can be obtained by using the high order
multiple quantum spectra to increase the line separation due to applied gradient
by a factor of n equal to the number of Larmor frequency quantum characterizing
the observed spectum [9, 10].

Another class of techniques is based on Fourier spatial phase encoding using
free induction decay [11], solid eclo [[2, 13], Jeener-Broekaert pulse sequence
[13; 14], magic and rotary magic ecloes [15]. NQR imaging of quadrupolar nuclei
was also studied [16, 17].

The problem of severe homogeneous broadening due to homonuclear dipolar
coupling can be eliminated by examining magnetically dilute spins in solids. In this
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respect NMR imaging of dilute 1/2 spin 13C isotope has been published [18-20].
The dilute nuclei heterogeneous line narrowing is achieved by a combination of
high-power proton decoupling combined in some cases with magic angle sample
spinning and deconvolution. Of course, the sensitivity limitations due to natural
abundance of 13C in typical solids can be severe and hence the techniques that can
enhance 13C spin polarization are of interest. These are based on rotating frame
heteronuclear polarization transfer using spin-locking procedure alone [18, 20] or
in combination with 1 1I spin polarization via dynamic nuclear polarization [19].

Recently it has been pointed out [20] that the NMR images of rigid solids
13C observation can yield images of nearly the same quality as 1 11 observation. The
small homogeneous linewidth, high-Q probes and narrow-band receivers associated
with 13C NMR compensate to a large extend for the low natural abundance nuclei.
Additional chemical information can be gained by recording the NMR imaging of
dilute spins in solids.

Considering 13C NMR imaging of solids as a viable alternative to 1H NMR
imaging in solids, in this paper we intend to analyze the behaviour of polariza-
tion transfer methods used for increasing the dilute spin polarization operating in
the presence of laboratory frame gradient. The spatial dependence of polarization
transfer process on various experimental conditions could be exploited for NMR
imaging and volume selective spectroscopy experi ments.

We shall concentrate here on the case of strongly dipolar coupled spins in
solids with abundant I = 1/2 spins and dilute S = 1/2 spins (13C, 15Ν , 29Si,
31P, etc.). In the following we wiii present the results which introduce a new di-
mension — the spatial one — in the field of heteronuclear polarization transfer
dynamics. A preliminary discussion of this spatial localization was presented in
Refs. [21] and [22].

2. The Hamiltonian and reference frame

In this section we recall some details to the Hamiltonian and quantum-me-
chanical interaction representation which occur for the polarization transfer in the
rotating frame experiments [23, 24].

We discuss the situation only in which we may neglect the diffusion of the
spins and spin-lattice relaxation times are taken infinitely long.

The most common spin system encountered in the polarization transfer ex-
periments contains two spin species I and S with different magnetogyric ratios γf
and rs. The sample contains NI and NS spins and in general N, » NS.

We shall consider in the following the experimental situation which is en-
countered in the laboratory frame NMR imaging experiment [25], i.e. the sample
is placed in a large static homogeneous magnetic fleld gradient G0 . In order to
simplify the problem but without loss of generality, the magnetic field Β0 and
magnetic field gradient G0 wiii be applied along the z-axis. The case of rotating
frame spatial encoding, using radiofrequency field gradients [26, 27] will be discuss
elsewhere.

The high field polarization transfer Hamiltonian defined for a z-slice in the
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laboratory reference frame is

where .Τ  is the spin operator for an individual "i" nucleus and p(r) is the den-
sity operator. Without loss of generality we can include the contribution of the
I-chemical-shift Hamiltonian in the Zeeman term HIZ(z). The term HII(z) de-
scribes the localized spin-spin interaction between I spins. For polarization trans-
fer experiments in solids the all sample dipolar Hamiltonians  ΗII = Σ HII(z)

contribute in principle to the spin dynamics. if we consider a particular z-slice with
macroscopic dimensions and the  r 3 spatial dependence of the dipolar interaction
it is a good approximation to assume that the spin dynamics is determined only
by the dipolar Hamiltonian for the z-slice.

The spatial localized Hamiltonian IIS(z) which characterizes the dilute S
spins is

where the terms have the same meaning as in Γq. (2).
The interaction HSs(z) between the S spins is ignored because of their low

abundance.
The last term of Γq. (1) which describes interactions of the spin system with
linearly polarized radiofrequency magnetic fields  of amplitudes2B1Iand 2B1S,

and frequencies ωI and ωS, respectively, has the form

The adiabatic demagnetization in the rotating frame (ADRF) [23] can be
taken into account by considering a continuous variation in the amplitude of the
radiofrequency field.

The time evolution of the statistical ensemble composed of many  identi-
cal particles can be described by a density operator p(t), which satisfies the

Liouville-von Neuman equation

where we denoted a Liouville operator corresponding to an operator 0 by Ο.
The total Hamiltonian and whole sample density operator call be written
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and

where Zn,in and Zmax define the dimension of the sample along the z-axis.
With a good approxImation the spin interaction between different z-slices

(or volume elements) can be neglected and this together with a very slow spin
diffusion leads to the spatial localized spin temperature [28]. Within this limit we
can write

Hence the Liouville-von Neuman equation can be written as a linear super-
position of local density operator equations

The rotating frame heteronuclear polarization transfer is conveniently de-
scribed in the double tilted rotating frames. In this quantum mechanical represen-
tation the local density operator evolves under the equation
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In the above equations the rotating and tilted rotating frames axes are de-
noted by (x, y, z) and (r, g, ,f), respectively.

For the z-slice, the effective frequencies are defined as

. where Δω = 	 - ω for I and S spin systems.
The localized I—S dipolar coupling Hamiltonian, which can be considered as

a perturbation, has the form

where bim are the heteronuclear coupling constants.

3. Spatial localized polarization transfer dynamics

In order to analyze the heteronuclear polarization transfer dynamics [29-31]
in a solid, subject to a main magnetic field gradient oriented in a particular z-direc-
tion, we introduce the z-slice observables. Ιn our case these are represented by the
thermodynamic coordinates defined as

where Q iTR (i = 1,2) are the relevant quantum-mechanical operators for each of
the systems involved in the polarization transfer process.

The spin dynamics can be analyzed in two extreme conditions. The fIrst
one corresponds to the spin-locking procedure (SL) [23]. In this case the spatial
localized observables are represented by the Hamiltonians

These two spin subsystems are coupled by the Hamiltonian Hp(z) given be Eq. (21).
The second procedure corresponds to a low-effective field condition for I spins

and it is achieved by adiabatic demagnetization in the rotating frame (ADRF) [23],
or by a Jeener—Broekaert pulSe Sequence [32]. ThuS the observables of interest in
the ADRF case are given by Hamiltonians
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and the coupling Hamiltonian, Eq. (21), can be obtained b y considering that the
tilt angle θI = Ο.

We can define new z-slice thermodynamic coordinates

which in the high-temperature approximation have the dimensions of inverse spin
temperature (k = 1). The validity of the spatial localized spin temperature in
solids has been discussed in Ref. [28].

Suppose now that we are interested in tle polarization transfer dynamics
of dilute spins [33]. In this case the following transport equation for the local
thermodynamic coordinate is valid

where the spatial localized parameter, 7.S (z), characterizes the polarization trans-
fer rate for the z-slice in the sample.

Equation (26) describes the dynamics of pularization transfer in the long
range time domain, i.e. for t » τc, where τc is the correlation time for the dipolar
fluctuation of the Ι spin system, but not in the time region of transient oscilla-
tions [29], for the strong dipolar coupled spins or in the case of solids with resolved
dipolar structure [34, 35].

Witlin the limit of a very short correlation time the spatial localized polar-
ization transfer rate [29] for the SL case is

where Μ2,SI (z) is the local Van-Vleck second moment of the magnetic resonance
line determined by the cross-coupling dipolar interaction. The spatial localized
Hartmann-Hahn mismatch is Δωeιf(z) = ωerr,s(Ζ) - ωe^,ί(')•

Equation (27) is valid in the high effective fleld for the SL case, i.e. ωe ff,I(z),
ωeff,S(z) » ωLI(z), where ωLI(z) is the rotating frame local field for the z-slice. It is

also valid only for θI (:) values different from the "magic angle" θn,, = cos -1 (3 -1 /2 )
for which the memory effect in the thermal bath becomes important in the case of
dipolar interactions. For this "magic z-slice" which could occur in the sample as a
result of the interplay between the values of magnetic field gradient, off-resonance
set, RF field strength and the dimension of the sample, a coherent exchange of I
and S magnetization takes place.

The spectral density functions whicl occur in the expressions of the polar-
ization transfer rates, (Eqs. (27) and (28)), are given by
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where 	(τ) and C(τ) are the dipolar fluctuation normalized autocorrelation func-
tions [29]. It has been proved [29] that for small values of time the autocorrelation
functions c() and Cz(τ) have a Gaussian [31, 36] and a Lorentzian [30, 37, 38]
character,

and respectively

The correlation time is taken to be τc = (2/A2) 1 /2 , where /1d2 is the second
moment of the corresponding spectral density function which can be expressed as
a function of lattice sums [29]. This dipolar correlation time has been evaluated
for some crystals [29, 37, 39] and powders [30, 38].

From Eqs. (27)-(31) for the localized polarization transfer rate we obtain
the following approximate expressions for the Si procedure:

for ADRF, respectively.
The normalized polarization transfer rate for ADRF, Eq. (35), is valid for

any position in a solid with strong nonlocalized dipolar interactions. Equation (34),
which describes the SL procedure, is not valid at the "magic position" or "magic
slice" Zm = Β1I/(G0z tan θ m I) for which the transfer process is coherent [35].

To evaluate the inverse spin temperature spatial distribution for the S spins
we have to consider the local couple rate equations which can be written in a	
matrix form

where any spin-lattice relaxation processes were neglected and
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In Eq. (38), the ratio between the local heat capacities of S and I spins [23] was
noted by εa(z) with a = SL or a = ADRF.

The time evolution of the inverse effective spin temperature for the S spins
can be obtained from Eqs. (36)-(38)

where βf (z) is the localized inverse spin-temperature reached by both spin systems.
At the beginning of the contact period  β2(z, 0) = 0.

4. Spatial localized transfarred magnetization

During the heteronuclear polarization transfer a Zeeman order is created
in the tilted rotating frame of S spins. The longitudinal local S-magnetization
produced at the moment; t along the effective field is

with the inverse spin temperature  β2(z, t) given by Eq. (39).
The detected instantaneous S-spin magnetization is

To evaluate the transferred magnetization we have to consider the spatial
localized thermodynamics of the process. The localized equilibrium inverse tem-
perature for both spin systems βf(z) is given by the following relation [23]:

where βI , a(z , 0) is the local inverse spin temperature of I spins at the beginning
of polarization transfer process.

We shall consider that the experiment was conducted so that a spin-lock
pulse sequence was applied for the slice selection [40-42], before the polarization
transfer process begins. In Figs. Ia and c we represent the pulse sequences which
use the slice selection by spin-locking applied previously to the SL and ADRF
procedures. Also another possibility is presented in Fig. 1b. In this case no slice
selective single or composite pulses are applied before the ADRF cooling procedure.

The spatial profile of inverse spin temperature after a spin-lock pulse se-
quence is [28] as follows:

where βL = 1/(kBTL), Τ1 is the lattice temperature. Α π/2-delta preparation pulse
was considered. The normalized spatial distribution of the spin-locking cooling
efficiency is described by the Lorentzian function [2δ]

where we suppose that the strength of RF Held is bigger than the local fleld.
For the ADRF procedure (cf. Fig. 1b) we can write

an expression derived using entropy invariance [43].
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If the slice selection using the spin-lock pulse sequence is applied in combi-
nation with the ADRE procedure from Eqs. (43) and (45) we get

The above equation is only approximate valid because, in general,
Zeeman-storage (π/2)-x-pulse, (cf. Fig. 1.c), distorts the profile of magnetization produced
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by SL-pulse sequence. Τo simplify the discussion, this distortion will be neglected.
Tle local normalized S-spin detected signal for on-resonance excitation is

defined by tle following equation:

From Eqs. (Λ0) and (41) for the spatial profile of the transferred S-spin
normalized magnetization we obtain

The above expression is also valid for the A DRF procedure combined with
the spin-locking slice selection (cf. Fig. lc), if we consider an homogeneous sample
again for which ωLI(z) = ωLI(0). Of course, the functional dependence of signal
profile on z will be different compared with the SI case, as a result of different
position dependence of polarization transfer rate. For t » TIS(z), the signal profile
is the same for the SL and ADRFprocedures and coincide with the spin-locking
slice selected profile.

For the procedure presented in Fig. 1b, the S-magnetization profile can be
obtained from Eqs. (45) and (46). For an homogeneous sample we have

The spatial selectivity of tle polarization transfer is related directly to tle
position dependence of tle polarizatίon transfer rate vanisles in tle limit of a very
long contact time.

Ιn the following we shall analyze the case when the rotation properties of
π/2-flip-back pulse (F-pulse) is affected bythe presence of the gradient. It is easy

to show [28] that the stored magnetization is related to the magnetization produced
by the polarization transfer process b y the relation
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The normalized Zeeman-stored spatial  dependent magnetization can be de-
fined by the expression

S. The profile and width of the excited slice

Using the computer simulations we intend to analyze the spatial distribu-
tion of the polarization transfer rates, the detected signals and the Zeeman-stored
magnetization. We shall compare the spatial selectivity with that of the spin-lock
composite pulse sequence. The on-resonance excitation for both spin species is
suppose to be fulfilled.

TABLE
The dipolar spin correlation times τc used
for polarization rate evaluation in the case
of the SL and ADRF procedures.

In the case of spatial encoding using main magnetic field gradient the nor-
malized transfer rates for CaF2 crystal with orientation B0 || [111] and adamantane
powder (C10H16) (where 43Ca and 13C = S, 19 F and 1 II = I, respectively) were
evaluated using the values of dipolar correlation times given in Table. The spatial
dependence of the r-functions, Eqs. (34) and (35), for these two model samples
in the case of the SL and ADRF procedures were represented in Figs. 2a—d for
different values of mismatch Hartmann—Hahn (HfI) effective frequency ΔV eff and
effective frequencies of S -polarization contact pulse.

We remark that the polarization transfer rates have a strong spatial depen-
dence. The profiles are different for the Si and ADRF cases as a result of different
functional spatial dependence evidenced by Eqs. (34) and (35). The profiles are in
general non-rectangular but they are close to this shape in some special cases (see

. The profiles depend on the sample stucture.
For CaF 2 crystal the dipolar correlation time depends on the crystal orien-

tation [29, 391. For instance we have the computed ratios
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and (35))a stronger spatial dependence of the normalized polarization transfer
rate for SL compared with the ADRF procedure, if the crystal orientations are
modified.

The magic-slice positions are given by the equation Zm = ±Β1I/(2½G0z )
and are present only for the SL procedure. The r-functions are not valid at these
positions.

111 Fig. 2a the magic slices occur at the coordinates Zm = ±14.14 mm, and
are out of the supposed sample spatial range. For stronger G0z gradient the magic
slices occur inside the sample (see Fig. 2c). For all these cases BIf =10 G.

The half-width at tle half-intensity for the normalized polarization transfer
rates profiles versus the main field gradient strength is presented in Figs. 3a and b
for the SL and ADRF procedure, respectively.
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We can see that the polarization transfer process becomes strongly localized
with increasimg gradient strength. Ιn the case of the SL procedure the localized
efficiency of polarization transfer is only a little higher for CaF2 crystal compared
with adamantane but it is vice versa for the ADRF procedure.

The normalized spatial distributed S-magnetization generated as a result
of the polarization transfer process was represented in Figs. 4a and b for the SL
and ADRF procedures as a function of HH mismatch and the S-pulse strength. Α
contact transfer pulse of duration t = NΤIS(0) with N = 3, was considered. The
profiles of transferred transverse magnetization are more rectangular compared
with the profiles of the transfer rates. At the position of magic slices the function
sz does not describe the transferred polarization for the SL case.
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The half-width at the half-intensity of profiles sz versus the gradient strength
was represented in Fig. 5a together with Δz 1 /2 value of the slice selection produced
by the spin-lock pulse sequence with a RF field of B1I = 10 G.

We can see that for all experimental conditions the spatial reglons, in which
S-spin magnetization is generated, are narrower compared with the regions excited
by the spin-lock pulse sequence. The most efficient procedure in this respect is
SL, with the higher value of Hlf mismatch. The most efficient ADRF procedure
corresponds to one with smaller value of S contact pulse strength.

When we discuss the spatial efficiency of transfer magnetization we have
to consider the fact that the maximum transfer rate corresponds to the matched
HH condition (i.e. Δνeff = 0) and at the same time the maximum magnetization
transfer occurs when the I and S spin reservoirs have the same heat capacity [23].
These two conditions cannot be fulfilled simultaneously.

If an on-resonance flip-back pulse with the same strength as the polarization
transfer S-pulse is applied to store the S-spin magnetization along the Β 0 field the
spatial dependent stored polarization is described b y function szz . (see Eq. (54)).
The half-width at the half-intensity of this stored polarization is represented in
Fig. 5b.

The profile of stored magnetization is in general different from the transferred
magnetization profile as a result of interplay of two factors: (is) the effect of gradient
on the rotation properties of the flip-back pulse and (ii) the spatial encoded polar
tilt angle of transferred magnetization. The comparison of Figs. 5a and 5b shows
that these effects are not essential for our specified conditions. Consequently, the
stored spatially distributed magnetization reproduces in a good approximation the
spatially transferred magnetization belaviour.

The spatial selectivity of the polarization transfer is improved if we sacrifice
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a part of produced S-spin magnetization by reducing the contact time between I
and S spins. In such condition the transfer magnetization around the z = Ο slice,
for which the transfer rate is maximum, does not have time to occur.

We can see from Fig. 6a that the selected slice by the SL polarization transfer
process is approximately one order of magnitude smaller than the excited slice
produced by the spin-lock pulse sequence. Even if the transfer magnetization profile
is not rectangular, the corresponding region is well defined as compared with the
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Lorentzian behaviour of the excitation profile produced by the spin-lock pulse
sequence [28]. We consider in these representations that Bl I = 10 G which is
bigger than the rotating frame local field in adamantane (BL = 0.55 G).

The same general behaviour takes place in the case of ADRF polarization
transfer but the produced slices are few times larger compared with the width
produced by the SL polarization transfer. This is evident from Fig. 6b. In this figure
we represent the normalized spatial dependent detected transfer magnetization
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function sz ' = s(z)sz , where s(z) is the spatial profile of the selected slice produced
by the SL-pulse sequence (Eq. (44)) and sz is the spatial profile of the ADRF
coherence transfer process (Eq. (50)). The slice profile described by the function
sz ' corresponds to experimental strategies represented in Fig. lc.

6. Conclusions

Heteronuclear polarization transfer in the rotating frame represents a viable
method for spatial localization, which can be naturally integrated in the pulse
sequences for imaging and volume selective spectroscopy of solids. If we consider
a volume selective experiment three different types of strategy could be imagined:

(i) The transverse polarization or dipolar order of abundant I-spins can
be produced in a localized volume using narrow band excitation pulse sequence
applied in the presence of magnetic field gradients. This selected region with lower
I-spin temperature can be used to transfer niagnetization to rare S-spins in the
same region. The polarization transfer process takes place in the absence of the
field gradient.

(ii) At the beginning of the experiment the magnetization is transferred
to the dilute S-spins uniformly in the sample. The localized region for S-spin
magnetization can be selected using the 'liquid state"-procedures in the presence
of abundant spin decoupling.

(iii) The transfer of polarization and the spatially selective excitation can be
performed in an integrated manner. In this latter case it is essential to understand
the polarization transfer dynamics in the presence of a Geld gradient. This method
has the advantage of lower RF power dissipation and possibility of performing a
much more efficient slice and finally volume selection.

A detailed theoretical analysis and compnter experiments were performed
for crystalline and powder samples for different cooling procednres of abundant
spins.

The polarization transfer rates slow a strong spatial dependence which is
mainly related to the spatial encoded Hartmann-Hahn misimatch. This spatial
dependence is very strong only for a limited contact time between spin systems.
The profile of the transferred S-magnetization is not rectangular but the excitation
is well localized as compared for instance with the homonuclear spin-locking pulse
sequence [28].

The polarization transfer in a heteronuclear rotating frame experiment proved
to be an efficient method of the slice selection.

The selected slice is generally narrower for the SL procedure compared with
ADRF. This is a direct consequence of the quasi-Gaussian cross-polarization spec-
tum as compared with the quasi-exponentiaΙ cross-polarization spectrum in the
ADRF case.

The width of selected slice becomes smaller as Hartmann-Hahn mismatch
increases and is becoming bigger for stronger contact pulse strength in the case of
the ADRF cooling procednre.

It was shown that in the case of the SL-cooling procedure for some values of
the experimental parameters a magic-slice can occur in the sample. A polarization
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transfer process with a limited number of coupled spins takes place for this position
and the shape of the selected slice should be locally modified. The presence of the
magic slice in tle sample region can be avoided by a proper selection of contact
pulse strength, fleld gradient and sample dimension.

For a heterogeneous sample tle spatial distribution of homonuclear and het-
eronuclear dipolar interactions and rotating frame relaxation rates will induce local
variation in the width and slice profile. These effects can be evaluated using the
presented theory.

These results have implications not only for volume localized
NMR spectroscopy but also for the ΝΙ 1 imaging of magnetically dilute nuclei in solids.
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