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STRONG-FIELD PHENOMENA IN ATOMS
QUASICLASSICAL APPROACH

M.V. FEDOROV

General Physics Institute, Russian Academy of Sciences, Moscow, Russia

A quasiclassical (WKB) approach is used to construct a theory of atomic
transitions induced by a strong light field. This approach is used to find the
"Coulomb-Volkov" solutions of the Schrödinger equation in which both the
Coułomb and light fields are taken into account. These solutions are shown
to be applicable in . a region of low light frequencies, low electron energies
and angular momenta.. The found solutions are used to describe two kinds of
processes: strong-field photoionization from highly excited (Rydberg) atomic
levels, and field-assisted electron-ion scattering. In the photoionization prob-
lem the strong-field complex quasi-energies of an atom are found. A problem'
of the strong-field stabilization of an atom, as well as the expected behav-
ior of the ionization time in its dependence on the light field strength are
discussed.

PACS numbers: 32.80.Fb, 32.80.Rm

1. Introduction

Already for many years a problem of an atomic electron in a strong light
field attracts :a significant attention of scientists, both theorists and experimen-
talists, working in the domain of the. plysics of light-atom interactions. From the
theoretical point of view tlis problem is rather interesting and rather difficult.
Even in the simplest case of the hydrogen atom a problem of an electron motion
in a pure Coulomb potential in the presence of a strong light. fleld has no exact
analytical solution and can be solved only approximately. During several last years
such approximate theories were extended to predict many interesting and unusual
strong-field phenomena. One of tlem is the field-induced stabilization of atoms,
or suppression of photoionization or multiphoton ionization in a strong-field limit.
There are several models predicting such an effect [1]. In this talk the main atten-
tion will be devoted to the socalled interference stabilization of Rydberg atoms [2]
(see also the list of references in this review paper). In accordance with the exist-
ing ("old") theory the effect is explained by Λ-type Rydberg-Rydberg transitions
via the continuum resulting in the secondary coherent repopulation of the Ryd-
berg levels. Subsequent transitions from these levels to the continuum interfere
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with each other causing a suppression of photoionization or stabilization of an
atomic population on the Rydberg levels. Not dwelling here upon any details of
this 'old" theory, let us mention only that the expected critical field εc beginning
from which the interference stabilization effect is expected to occur is estimated as
εc ~ ω5/3 where ω is the light frequency, ω GG 1 (both ε0 and ω in atomic units).
Here and below we assume that ω is larger than the Rydberg electron binding
energy, w > |Εn | « 1 where E n= —1/2n2,. and n is the atomic electron principal
quantum number, n » 1. Tlis estimate follows from the socalled quasiclassical (or
WKB) approach widely used and discussed below. On the other hand, the 'old"
theory of the strong-field photoionization from the Rydberg levels exploits also sev-
eral other approximations applicability of which hardly can be proved rigorously.
Some of these approximations are the well-known rotating wave approximatiοn
(RWA), the socalled "pole" approximation, the flat continuum approximation,
adiabatic elimination of the continuum, the model of essential states, and so on.
The main goal of this talk is to present a theory free from most of these approxi-
mations, and based mostly on the quasiclassical approach.

To complete the introduction to this "new" strong-field theory, let us remind
briefly how the quasiclassical approach works in the weak-field limit [3, 4]. This
approximation is known to be valid in a region of positive or negative electron
energies close to the ionization threshold: |En | « 1 and E « 1 where Ε > 0 is the
atomic electron energy in the continuum. In this case the bound and free radial
atomic electron wave functions are given by [5]:

where Cn and CE are the normalization constants, and pn (r) and PE(r) are the
quasiclassical momenta

The rate of bound-free transitions in the weak-field theory is determined by
the bound-free matrix elements VIE (via the Fermi golden rule) where VIE =

Xn|(1/2)de0|xΕ, anddand ε0 are the atomic dipole moment and the light field
strength amplitude. In the quasiclassical region (|Ε | « 1, Ε « 1) the quasiclas-
sical momenta pn(r) and pE(r) of Eq. (2) can be expanded in powers of r| En |»  1
and rE «  1 to give

where the energy conservation rule Ε =Εn +ω istaken into account. Equation (3)
yields immediately the main quasiclassical estimate of the bound-free matrix ele-
ment VnE ~ε0/ω5/3n3/2. This equation shows also that the main contribution to
the quasiclassical bound-free transitions is given by a vicinity of the quasiclassical
electron-nucleus distance r ~ r q where
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By an assumption [4] this quasiclassical length has to be much shorter than the
Rydberg orbit size rm = 2n 2 ~ 1/ω (to justify the used expansion in powers
of r|En| <ς 1 and rE C 1). The condition rq « rm determines the main small
parameter of the quasiclassical theory ω 1 /3 « 1. In other words, the light frequency
ω has to be small enough for the quasiclassical approximation to be valid. In reality
inequality ω1/3 « 1is satisfied in the IR, or longer wavelength regions. One can
check easily that under the condition ωI/3 1 the centrifugal term l(l + 1)/r2 in
the Schrödinger equation estimated at r ti rq is much smaller than the Coulomb
energy 1/r if only the angular momentum quantum number 1 is not too large,
1 «  ω - 1/3 . For such states the centrifugal term can be dropped and the matrix
element VnΕ appears to be independent of the electron orbital momentum [4].

2. Strong-field quasiclassical quasi-energy solutions
of the Schrödinger equation

Let us consider now the strong-field case by assuming that ε0 can be either
large, or small as compared to, or of the order of ε = ω 5 / 3 . Let us assume that all
the main features of the quasiclassical approximation described above still remain
valid in the strong-field theory. We will assume in particular that in the strong-field
theory for low-angular momentum states the centrifugal term can be dropped from
the time-dependent Schrödinger equation. After such a simplification an equation
for the radial part of the electron wave function χ(r) = rΨ(r) takes a form

where in principle both χ and Ψ depend parametrically on the angle θ between
the vectors ε0 and r (rigorously ε0 in Eq. (5) has to be understood as ε0 cos θ).
Let us present the quasi-energy solutions of Eq. (5) in the form

where γ is the quasi-energy and the signs "+" and "-" correspond to the right-
and left-hand direction propagating traveling quasiclassical waves. Each of the
functions X ± can be considered as a product of two factors. The first of them
includes the pre-exponential factor and the first exponent on the right-hand side
of Eq. (6). This part reminds closely the field-free quasiclassical wave functions [1].
On the other hand, the second exponent on the right hand side of Eq. (6) reminds
some components of the nonrelativistic Volkov function. In principle Eq. (6) can be
considered as a definition of a new unknown function f.1,± (r,  t) introduced instead
of X  ± (r, t). By using this definition and substituting X ± of Eq. (6) into the
Schrödinger equation (5) we can derive an exact equation for f γ ± (r, t) which is too
complicated to be written explicitly here. But this equation can be significantly
simplified under the assumption that the most important region of r is r ~ rq
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(Eq. (4)). Then many terms in the exact equation for f ±(r, t) can be dropped as
having a higher order in a small parameter ω' to give

where f = f γ ± (r,1). Equation (7) is already simple enough to be solved and to
yield

where τ(r) s the time it takes for a classical particle with an energy γ to move in
the Coulomb field from the point r = Ο to r:

υcl(t) = rcl(t) and rcl (t) are the velocity and time-dependent radial coordinate of
a classical electron on its field-free Coulomb trajectory

Now the strong-field quasiclassical quasi-energy solutions (6) x.7± = rΨ  of the
Schrödinger equation (5) take a form

These functions can be considered as a quasiclassícal analog of the Volkov func-
tions. They are valid in the low-energy low-frequency region |γ| « 1, ω«  1. How-
ever, if in the Volkov functions an atomic potential is ignored completely, in the
functions X γ ±(r, t) of Eq. (11) both the electron-light and. the electron-Coulomb
interactions are taken into account (in the quasiclassical approximation).

It should be noted that an approach similar to that described above, though
in a different and more complicated form, was used earlier by Bersons [6].

3. Strong-field photoionization from Rydberg levels

Let us apply now the derived expressions for the quasiclassical quasi-energy
wave functions χγ+(r, t) (Eq. (11)) to a problem of a strong-field photoionization
from the Rydberg levels. In this work the formulated problem will be consid-
ered as an eigenvalue problem, and the corresponding eigenvalues (i.e., complex
quasi-energies) will be found from a generalized Bohr-Sommerfeld quantization
ule derived below. As usual, this quantization rule follows from the reasonably
formulated boundary conditions. Not dwelling here .upon any details let us

mention only that the most important difference with the field-free case arises from
the region of small r (r ≤ rq ). In this region Eqs. (8) and (11) can be significantly
simplified. In particular, τ(r) in the argument of υ cl (±τ(r) + t - t') can be put
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equal to zero. The classical velocity itself can be replaced by its small-t singular
expression vcl(t) ≈(4/3t)1/3, and the upper limit of the integral over t' in Eq. (11)
can be replaced by co to give

In the same region (r →0) the quasi-energy wave function χ γ (r, t) obeying the
corresponding large-r boundary conditions takes a form

where ζ = (4/3) 1 / 3Γ(2/3)ε0/ω 5 /3 , Γ and Jk are the gamma- and Bessel-functions
[7], and μ = π/ ' √-2-γ . The most important feature of the result derived (Eq. (13))
consists in the appearance of all the Fourier (or Floquet) structure in a single
quasi-energy wave function. Such a function cannot obey the zero boundary at
r = 0 at any t. This condition can be fulfilled only if the total wave function has
a form of a superposition of xγ(r, t) of Eq. (13) and of an infinite set of outgoing
(reflected) waves with quasi-energies differing from γ by nω, where n = 1, 2, ...

where Cn are some unknown constants. It should be noted that Eq. (14) is derived
under the assumption that there is no interaction between the quasi-energy level γ
and any lower lying levels with quasi-energies γ- nω. This simplifying assumption
can be valid if ω is not too large (though is much smaller than one), so that for
any n the difference γ - nω does not approach any real atomic levels. However, if
ω is small enough for the quasiclassical approximation to be well applicable, the
levels of energies γ - nω can belong to the same set of Rydberg levels as γ. In
this case the sum over n in Eq. (14) has to be extended to include negative n.
Such an extension makes a problem under consideration much more complicated.
For this reason in the present analysis we consider a simplified case when all the
interactions between the quasi-energy levels γ and γ - nω can be ignored.

Now with the help of the mentioned above small-r boundary condition one
can fmd both the expansion coefficients Cn in Eq. (14) and the dispersion equation
for μ or quasi-energy γ (the generalized Bohr-Sommerfeld  quantization ule). The
latter can be shown to have a form

From this equation one can fmd easily both the real and imaginary parts of μ
(μ = μ' + iμ") and of the complex quasi-energy γ = η' + iγ ":
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The results derived are shown in Fig. 1. The dashed and dash-dotted lines corre-
spond to the results of the perturbation theory and of the "old" strong-field theory,
respectively. Probably the most interesting prediction of the new strong-field the-
ory concerns a quasiperisodicity of the stabilization-destabilization regions which
follow after each other and in which | "(ε0)| falls and grows again (Fig. 1b). The
regions of the fastest decay are close to the zero-points ζ: (i = 1,2,...) of the
zeroorder Bessel function J0 (2ς). The minimal values of |γ" | are of the order
of the inverse classical Kepler period tK = 2πn 3 , |γ"|mi n ti 1/tK. However, it
should be noted that a direct connection between |γ"| and the ionization time Τi
(T; ti 1/|γ"|) occurs only in the weak-field limit when |γ"| « 1/tK. In the case
| γ"| ≥ 1/4( the "old" theory predicts [8] TC ~ tK• A similar prediction of the
new theory concerning the ionization time is the following: the ionization time is
expected to be a falling function of the field strength until ε0 is weaker than
And then, in the region ε0 > w 5/3 , T (ε0) is expected to be stabilized on the level
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tK, maybe with oscillations around tK with a relative amplitude of the order
of one. To confirm these expectations rigorously one has to solve the initial value
problem under the same approximations and assumptions as used above, and such
a problem is not yet solved.

As for the real parts of the quasi-energies γ' (Fig. c), they can be equal either
to the field-free Rydberg energies Ε n (as long as J0(2ς) > 0) or to the strong-field
quasi-energies of the "old" theory [2] Ern) = 1/2 (Εn + Ε +1) if J0(2ς) < 0.

An additional information about the stabilization-destabilization regimes can
be deduced from an analysis of the reflection coefficient R in the bound component
of the strong-field electron quasi-energy function. In the theory presented here this
reflection coefficient is shown in Fig. 2 and analytically is given by

At the points ς = ςi (i = 1, 2, ...) R(ζ) = Ο. This is the case of the most fast
ionization when each portion of the electron wave function entering the quasi-
classical region r < rq makes an almost immediate and complete transition to
the continuum. The regions where R(ς) > 0 correspond to a partial stabilization
which however is incomplete because Rmax < 1, i.e., at any ς ≠ 0 at least a part
of the electron population is transferred to the continuum after a single crossing
of the quasiclassical region. In the 'old" strong-field theory R(ς) would approach
1 when ς —> οο (the dash-dotted line at Fig. 2). This inversion of the reflection
coefficient would explain the earlier investigated [2, 9] time-space stucture of the
bound part of the strong-field electron wave function. The main difference from
this result arising in a "new" theory is an incomplete achievable inversion of the
reflection coefficient and, hence, incomplete stabilization of the strong-field-driven
atom.

At last, returning again to the ionization time Ti(ε0) discussed above, we
would like to formulate an additional hypothesis concerning its strong-field be-
havior. The expected result is T (ε0) tK 1/ΔΕ where ΔE = Εn+1 - En =

En+1) - Ε()is the spacing between the closest quasi-energy levels. In fact,



242	 Μ. V. Fedorov

the relation [Ti (εο)]min 1/ΔΕ(ε0) looks so natural that it can be even much
more general than the presented theory itself. Then we can expect that in a very
strong field Ti (εο) can grow because of a decreasing spacing between the closest
strong-field quasi-energy levels (Fig. 3). Such a possibility correlates with the be-
havior of the strong-field atomic quasi-energy levels calculated in the socalled

Kramers-Henneberger model [10]. Therefore, the hypothesis is that the decrease
in ΔΕ(ε0) is the main reason of growth of [Ti(εο)]min 1/ΔΕ(ε0) and of the
super-strong-field stabilization of atoms.

4. Conclusion

In a conclusion, let us describe briefly the main directions in which the
presented theory has to be extended. First, as mentioned above, in the case of
small frequencies ‚4. one has to remove the used simplification under which all
the transitions between the quasi-energy state χ  and lower lying states Xγ -nw
were ignored. In other words the sum over n in Eq. (14) has to be extended to
include negative n. The main question is how does this change affect the dispersion
equation and the complex quasi-energies described above?

Second, a very large attention has to be paid to the ignored above angular
motion of the electron. Even if the used above approximation of a "frozen" angular
motion is good enough, the derived quasi-energies γ depending parametrically on
the angle θ (via c0 in fact equal to ε cos 8) have to be considered as an analog of
the potential energy for a slow angular motion. The corresponding angular part
of the Schrödinger equation has to be solved explicitly, and then the used above
condition (1 ) ‚.,2Ί3 « 1 has to be checked.

Third, a very important question concerns a relation between the eigenvalue
and the initial value problems. To describe properly the time evolution of atomic
populations one has to solve the initial value problem, probably under the same
assumptions as used above in the solution of the eigenvalue problem. In such a
theory the strong-field ionization time T (ε0) can be found explicitly, as it has been
done in the 'old" theory of interference stabilization [2, 9].

And the last, forth, strategically probably the most important problem men-
tioned above is a unification of different models of the field-induced stabilization,
establishing of links between them. From this point of view, it seems to be rea-
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sonable and even necessary to try to check both numerically and analytically the
formulated above hypothesis that the most general strong-field relation between
the ionization time and spacing between the closest quasi-energy levels has a very
simple form [Ti(ε0)]min 1/ΔΕ(εo ).
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