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CLASSICAL LIMIT
OF ENTANGLED CORRELATIONS

K. Woépkiewicz*

Institute of Theoretical Physics, Warsaw. University, Hoza 69, 00-681 Warszawa, Poland

Generalizations of Bell’s inequalities for Einstein Podolsky and Rosen
entangled correlations for arbitrary spin s are discussed. Violations of lo-
cal realism and the classical limit of quantum nonlocality for large s are
discussed. The role of the polarization and of the spin alignment in the vio-
lation of the Bell inequalities are investigated. A Bayes analysis of entangled
correlations is performed using the nonlocal quantum distribution. The local
but nonpositive Einstein Podolsky and Rosen quantum distribution is inves-
tigated in the limit when s — co. The classical limit of the quantum Malus
law for arbitrary spin s is formulated in terms of the spin path integrals.

PACS numbers: 42.50.Wm, 03.65.Bz '

1. Bell’s inequalities for arbitrary spin s

The concept of local realism (LR) is based on the fundamental assuniption
that physical systems can be described by local objective properties that are inde-
pendent from observation. LR versus the quantum description has been described
best in the framework of spin-% Einstein Podolsky and Rosen (EPR) correla-
tions [1]. The generalization of the EPR entangled correlations for arbitrary spin
s involves the measurements of the spin correlation E(a;b), and the spin trans-

mission probability p(e; b). In quantum mechanics the spin correlation is

B(a; b) = Tr{#3(a) © 5(b)} - (1a)
and the spin transmission probability is defined by the following formula:
p(a; b) = Tr{pP(a) © P(B)}. (1b)

In these expressions 5(a) (5(b)) and P(a) (P(b)) are the spin and the projection
operators of the particle a (b) along the polarization direction a (b) and 7 is
the density operator that describes the entangled state of the two particles with .
arbitrary spin.

*Also associated with the Center for Advanced Studies and Department of Physics and As-
tronomy, University of New Mexico, Albuquerque, NM 87131, USA.
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. Following the basic ideas of a theory based on LR the spin components
measured by linear polarizers are objective realities described by deterministic
functions s(a, ;) and s(b,As), with hidden variables A, and A;. These hidden
parameters are randomly distributed with a positive and normalized distribution
function

/ dhq / APOGM) =1 and P(A; M) 20, @)

which is local, i.e., is independent on the polarization directions a and b. In the
framework of such a theory the transmission of an arbitrary spin s through a linear
polarizer a is described by an objective reality represented by the transmission
function (e, As). .

In a theory based on local hidden variables (LHV), the spin variables and
the transmission functions are local realities that depend on hidden or unknown
parameters which are averaged out during a detection process. Such theories lead
to the spin correlation and to the spin transmission in the form of the following
statistical averages of local realities:

E(a; b) = / A, / AP0 W)s(a, Aa)s(, ) (3a)
and o
p(a; b) = / A / A0 P(has M)i(a, M), o). | (3b)

If we assume that the objective realities s(a, o) and s(b, A) of the spin can take up

only values from —s to s, we obtain that the spin correlations (3a), evaluated for

four different polarization axes, are restricted by the following spin Bell’s inequality
(SBI) valid for arbitrary spin s [2]:

|E(a3 b) + F(a’; )+ B(a’; ") — E(a b")] < 26 (4)

If the transmission functions through the linear polarizers @ and b are:

0 < t(a,As) <1and 0 <t(b,A) <1, the transmission probabilities (1b) evalu-

ated for four different polarization axes are restricted by the following transmission
Bell’s inequality (TBI) [3]: .

~1<p(a; b)+p(a’; b) +p(a’; ') — p(a; ') — p(a) — p(b) < 0. (5)
In this expression p(a) and p(b) are the marginals of the joint probability p(a; b).

In analogy to quantum mechanics for particles with s = 1/2, the objective trans-
mission function and the objective spin reality are related by the equation

t(a,ra) = 1/2+ s(a, Aa) "(6a)
and in this case SBI and TBI are equivalent.

In a model LHV theory one can assume for example that the LR for the spin
is s(a, Aa) = 1 cosa(a, A,), where a(a, A,) is the relative angle between a and the
objective spin orientation characterized by the hidden parameter A,. According to

the relation (6a), the LR transmission function for the spin--;- particles is in this
case

t(a, ) = (cos %)2. | (6b)
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This expression has the form of the well-known classical Malus law that predicts
an attenuation of the light intensity through a linear polarizer.

-For s > 1 SBI and TBI are not equivalent. The nonequivalence of these
two Bell’s type inequalities for s > 1 can be illustrated using the following argu-
ment. Consider the direct product of two irreducible representations of the rotation
group. For the spin group we obtain in this case Lhe following Clebsch-Gordan se-
ries: D*Q@D* = D°®D'®D?®...@ D?*. For spin-1 systems the only components
in this series are the scalar and the vector representatlons For this particular value
of the spin we have the very simple relation between the spin and the projection
operators: P(a) = 1/2 + 5(a). This relation involves the scalar and the vector
components only. This relation is used in the expression (6a) in the LHV theory
for the objective realities of the spin and the transmission function. For arbitrary '
spin s the relation between the spin and the projection operators is [4]

2S+IZ Z G Qrms (7)

s=0m=-s

where Qm are irreducible tensors of rank (s,m). The vector component of the
projection operator is called the spin polarization term, while all higher tensors are
called spin alignment. Only for spin—% the vector component uniquely determines
the projector operator, as no higher tensors appear in this case. Because of this,
the transmission correlations (1b) and (3b) differ from the spin correlations (1a)
"and (3a) by the terms involving for s > 1 tensor correlations of the two spins. Due
to these tensor correlations we have the following relation between TBI and SBI:

TBI D SBI for s> 1.

This symbolic relation expresses the fact that for higher spins SBI reflects only the
vector character of the spin correlations, while TBI contains all the higher tensor
correlations of the spin alignment.

2. Violation of Bell inequalities

The EPR entangled state of the two particles each with spin s is given by the
density operator p = |#){1|, where [¢) is the singlet state of the two correlated
spins. Using the explicit expression for the Clebsch-Gordan coefficient and the
spin eigenstates |mq;m;) we obtain

SR

m=—s
From these definitions we obtain that the reduced (marginal) density operators of
the individual spins are

)3m

]m m). (8a)

I, and pp=Trp= I, (8b)

1 1 7
2 +1° % +1°
For the EPR state with arbitrary s the quantum spin polarization correlation is [5]

E(a; b) = _f(_s;-__l_)_ cos o, _ 9)

ﬁa = Tl‘bﬁ:
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where « is the relative angle between the two directions a and b. For the coplanar
geometry of the polarizers (a-b=b-a’ = a’- b’) a maximum violation of the
SBI given by (4) is expected for @ = w /4. Introducing (9) into (4), we obtain that
the Bell inequality is violated if v/2/3 < s/(s + 1). A violation is obtained only for
s = 1. For s > 1 the SBI is not violated at all [5]. '

It is clear that in order to test local realism for s > 1 we need to use the
TBI with spin alignment. In order to do that we need to calculate correlations
of the projection operators with polarization and alignment terms (for s > 1).
A simple and a compact expression for the projection operator can be obtained
if spin-coherent states (Bloch states) |2} = |0, ¢) are used. The spin coherent
states can be scen as directions on a unit sphere (Bloch sphere) [6]. The solid
angle £ in this state describes an angular orientation of the spin-coherent state
on such a Bloch sphere. In this coherent-state phase-space, the direction of the
polarizer a can be represented by the solid angle 2, = (04, ¢4) and accordingly
P(a) = |£2,)(824]. The spin-coherent states form an overcomplete set of statcs on
the Bloch sphere and the projection operator of the polarizer is complete in the
following sense:

234':; 1 /anI.Qa)<.QaI = f, (10)

where the integration is over the solid angle on the Bloch sphere. Using this formula
and the EPR spin-s wave function given by (8a) we obtain [7]

1 . a\4s
p(a, b) = m (Sln 5—) ) (113)
and
1
(@) = p(H) = 5 (11b)
s-function
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Tig. 1. Plots of S as a function of the angle « for different values of s.
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This last relation expresses the fact that the EPR wave function if reduced to
a single-spin subspace, becomes a completely mixed state. Using (11) (with a
coplanar geometry for the polarizers) we obtain the TBI inequality (5) in the
following form: —1 < S(a) < 0, where the parameter S is a function of the angle
a only. In Fig. 1 there are plots of this function for different values of the spin s.

In contrast with SBI, TBI is violated for all values of s, although the violation
decreases with increased values of s. This behavior is consistent with the expected
classical behavior of the EPR correlations in the limit of s — co.

3. Classical limit of EPR. correlations

In the following we shall study the classical limit of the entanglement in the
framework of quantum local and nonlocal correlations.

3.1. Large spin limit of nonlocalily

We begin our discussion of the large spin limit of nonlocality using the
two-point click counting distribution that has been introduced and applied re-
cently to the discussion of quantum jumps in optical transitions [8]. Using the
spectral decomposition of the spin projector operator

P= /d,\ MOA—=DB), | C(12)

we can rewrite the quantum mechanical joint-probability (1b) in the following
form:

p(a; b) = / A / dAs Aads P(aka; BAs), (13a)

where the distribution function is given by the following quantum mechanical
average:

P(aXg; bAs) = Tr{p8(Aa — P(a)) ® 6(% — P(B)}. (13b)
With the help of this distribution function we have rewritten the quantum mechan-
ical joint probability function (1b) in a form given by (13) which has remarkable
similarities to the LHV correlation function given by Eq. (3b). Because the projec-
tion operators can have their eigenvalues equal to 1 or 0, i.e., can represent only
“yes” or “no” answers, the values A, and A; can take only values equal to 1 and
0, i.e., corresponding to “clicks” at the detectors. The bivalued distribution given
by Eq. (13) is positive everywhere, but depends on the polarization directions a
and b. The distribution function which depends on the orientation a of the first
analyzer and on the orientation b of the second (possibly even remote) analyzer is
nonlocal.

In the framework of EPR correlations it is customary to call an analyzer-de-
pendent distribution function a nonlocal distribution function. The nonlocality of
this distribution function makes the TBI inequality void, because in order to ob-
tain this inequality the existence of a universal, local (polarization independent)
distribution in the parameters A, and )\, (hidden parameters in this case) is es-
sential.
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Quantum mechanics tells us that if we insist on distribution of the form given
by (13), we can do it but only under the condition that the statistical distribution
of the parameters A, and JX; is nonlocal.

In order to elucidate this point further, we shall perform a Bayes analysis of
the two-point distribution function. The joint distribution can be written in the
following form: '

P(z\a; )\1,) = P(/\alz\b)P(/\b). (14)
The distribution P(A|As) is the conditional of the event A, (“yes” or “no”) to occur

under the condition that A, (“yes” or “no”) has occurred. From the definitions (13)
and (8) we obtain that the single marginals of this joint distribution are

2s 1
= d P(1)= ——. 15
PO=g77 =4 P =575 (15)
The nonlocal conditional distribution is given by the following matrix:
oy [POI0) P(O[L) .
PO =[2G P (162)
where
1 o 4s . o 4s
= — - in - : =1- = 16b
POj0) = o [2s -1+ (sin 2) ] and- P(0]1) = 1 - (sin 2) (16b)

with the sum rules fulfilled by the conditional probabilities
P(0]0)+ P(1]0)=1 and P(0|1)+ P(1]1)=1. (16¢)
In these formulas o is the relative angle between the two unit vectors a and b.
Tor notational convenience we have omitted the a-argument in the distributions
(16a). This result shows that one can regard the EPR correlations as just correla-
tions of two sequences of random numbers represented by transmission functions
t(a,Xs) = A; and t(b, Ap) = X, that are jumping between values 0 and-1 (“no” and
“yes” answers) for polarization measurements performed with linear analyzers.
‘ This positive and nonlocal distribution leads to a simple statistical interpre-
tation of the spin transitions and of the violation of Bell’s inequality in terms of
random numbers 1 and 0 for the transmission functions. The quantum mechanical
average in this case is represented by an ensemble average of two sequences of
random numbers 1 and 0. This randomi character of these variables can be applied
in the description of the EPR correlations measured by two polarizers. To each
polarizer there corresponds a sequence of random variables denoted by t(a, ;)
and (b, Ap). These are the only possible outcome of the transmission experiment.
On each single polarizer the outcomes are completely random and the “yes” and
“no” answers occur with probabilities P(0) for “no” and P(1) for “yes” (1/2 in
this case). The nonlocality of the EPR correlations shows up in the fact that these -
two perfectly random sequences (on the first and the second polarizers) are corre-
lated and the correlations are given by Eq. (13a). These formulas predict that the
EPR wave function can be understood as a nonlocal correlation between two ran-
dom sequences (e, As) = (1,0,0,1,1,0,0,...) and t(b,\;) = (0,0,1,1,0,...). The
nonlocality of these correlations follows from the fact that whenever (b, );) = 1
on the polarizer b, we must have {(a,A;) = 1 or 0 on the polarizer a with the
- probabilities P(1]1) and P(0|1), i.e., the outcomes on a (possibly even a remote
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Fig. 2. Plots of the conditional probability P(0|0) as a function of the angle’ a for
different values of s.
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Fig. 3. Plots of the conditional probability P(0|1) as a function of the angle o for
different values of s.

analyzer) are determined by the outcomes on the analyzer b. This is how the EPR
quantum sequences of random numbers violate local realism. In Fig. 2 and Fig. 3
there are plots of the conditional probabilities P(0]0) and P(0|1) as functions of
the angle « for different values of the spin s. It is clear from this figures that with
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the increased value of tlie spin s these distribution functions become sharper closer
to only “yes” or “no” answers.

Let us investigate, using these random sequences, the large spin limit of
nonlocality. In the limit of s — oo we have

P(,\.,l,\,,)z[(l) (1)] for afm (17a)
P(A,,[A,,):[(l) ‘1’] for a=n. - (17b)

‘This means that for & = 7 we have a 100% confidence that the outcome on a will
be the same as the outcome on b. For a # m we now have 0% confidence that the
outcomes on a will be the same as the outcomes on b: This is precisely what we
can expect from the entangled correlations in the classical limit corresponding to
s — 00. In this limit the quantum nonlocal distribution becomes a local probability
distribution corresponding to sharp “yes” and “no” outcomes of the measurement
involving classical antiparallel angular momenta. From (11) we obtain that the
condltlonal probability for spin transmission is

p(alt) = p(a; B)/p(b) = (sin 3 )"" | (182)

and

. _ | “always” for a=m=
sl_n'r& p(alb) = { “never” for o # . (18b)

3.2. Spin quasi-distributions and the classical limit

In full analogy to the coherent state diagonal P-represcntation for bosohs, an
arbitrary density matrix p of the spin system can be represented in the following
diagonal form [9]:

- / A, / AP (a; M) Aas Ao} as Aol | (19)

where the diagonal weight function P(),, As) has the meaning of a quasi-probability
distribution, and accordingly contains all the statistical information about the
spin state. In this expression the hidden parameters correspond to the random
orientations of the spin system in the phase-space generated by the spin coherent
states, i.e., A\g = 2, , Ay =

From this relation, we obtain that the probability of transmission through a
polarizer of an arbitrary spin state is a statistical average of the form (3b), and is
given by the following formula:

P(a;b) = / i / AP ) e | 26) IO 20) 2. (20)

'The direction of the polarizer a is described by a state with an orientation given
by the solid angle £2, and accordingly the quantum probability of the spin trans-
missions through such polarizer is given by the following formula:

t(a,30) = [l 27 = (cos? 52) ", ()
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where cos agq = cos 8/, cos 0, + sin 05 sin 0, cos(¢}, — ¢,) gives the relative spherical
angle between the hidden orientation A, of the detected state and the direction 2,
of the measuring polarizer. A similar expression holds for the transmission function
{(b, As). The quantum mechanical formula (20) has the form of a LHV theory with
local realities given by cos aq and cos @ and that the “hidden-variable” directions
2, and £} are integrated out. In this quantum mechanical expression the formula
for the transmission function (21) provides a generalization of the Malus law (6b)
to the case of an arbitrary spin s. In the following we shall call these expressions
spin Malus transmission functions. ‘

From Eq. (19) we can derive that the EPR entangled state of two correlated
spins is described by the distribution function which can be written in terms of
the Legendre polynomials [10]

2s ’ .
P(Aa, M) = ) _ crPi(cos(a)). _ 4 (22)
=0 :
In this formula cos a describes the relative angle between the two hidden directions
Aq and Ay on the unit Bloch sphere. The coefficients c¢; are calculated from the
explicit form of the entangled wave function (8a). In Fig. 4 there are plots of
this distribution function as functions of the angle a for different values of the
spin s. From this form it follows that the EPR quasi-distribution function can be

P-function
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Fig. 4. Plots of the probability P(/\,.,,\;,) as a function of the angle a for different
values of s. ' .

negative and is independent from the directions of the polarizers used to detect the
two spins. This means that this distribution function is local, in the sense used in
the LIV theory. The only fundamental difference is that this distribution function
can be negative making the Bell inequality inapplicable in this case.
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As the classical limit s — oo is approached, the nonpositive local probability
distribution (22) tends to a positive and local distribution of the following form:

: 1
Jim P(Xa, ) = o= 8@ (Ag + o). (23)

This expression corresponds to a sharp distribution of the classical antiparallel
angular momenta.

3.3. Classical limil of the quantum Malus law. The spin path iniegral

Following the formula (21) we see that the quantum amplitude for the trans-
mission of a spin state |{2) through a linear polarizer characterized by |§2,) is:
A = (£2,]2) and that the probability is just the quantum Malus transmission
function t(a,As) = [(£20]92:)|?. Following the basic idea of path integration, we
shall evaluate the Malus amplitude dividing the spin trajectory on the Bloch
sphere into infinitesimal subintervals |£2;), where ¢ = 1,...,N with £, = (2
and 2y = £2,. Using the decomposition of unity (10) for the spin coherent states
for each subinterval and the infinitesimal form of the Malus amplitude (£2;]2;_1)
we obtain

A=/d0128+1/d.922s+1,
47 4
...exp (—is Z(qﬁi — ¢i—1)cos 0,'_1) . (24a)

In the limit of N — oo this expression can be written in the form of the spin
Feynman path integral ‘
A= /’15.()234: 1 exp (——is/qu cos 0) , (24b)

where D2 is the functional path integration measure over all trajectories connect-
ing |2} with [£2,) on the Bloch sphere. Upon the following identification:

¢&q, cosfsp, do deosf < dgdp,

we can rewrite the path integral (24) in the form

A= /'Dq/Dp2s4j; 1 exp (—is/pdq) (24c)

which is the spin analog of the phase-space path integral for the following quantum
mechanical amplitude in the configuration space:

(¢algo) = / Dy / 'DP% exp (—% / dqp) : (25)

The Malus probability for a spin transition of the state |[2p) through a linear
polarizer can be expressed as a product of four path integrals

2541
[A|? = /DQI/Dpl 347r /qu

2s+1 . .
x [ D22 exp iS(ar,pr) — i8(an, ), (262)
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where the classical action is , C
1 v
S(g,p) = 8/pdq_+ 5/’Hdt. , (26b)

In this expression a classical Ilamiltonian H has been added in order to describe
a transition through the linear polarizer with a dynamical time evolution. In the
limit of s — oo, with the following change of coordinates in the path integrals:
EI,T:;]q +(1/28)§, p1,2=p=+(1/2s)p, the Malus transmission function reduces
o

tim 147 = (24 (095 (- 528) 6 (54 LO0). |
s_l_pgolAl Dq Dp&( % 0p ) Pt %) (27)

This expression shows that in the classical limit the' Malus transmission function
reproduces the classical dynamics of an angular momentum with the following
equations of motion:

$=1{6,H} and 6= {0,H}, | | T (28a)
where the Poisson bracket of the classical dynamics is given by the following
formula: .

(B = (0/103 OAE)B)

shsind \ 0¢ 00 80 8¢ (28b)

96 90 90 0

4. Conclusions

In this paper generalizations of the Bell inequalities for EPR correlations for
arbitrary spin s have been discussed. Violations of local realism and the classi-
cal limit of the EPR correlations for large s has been investigated in the frame-
work of local and nonlocal correlations. The relations (13) and (20) show that
the violation of Bell’s incquality can be due either to nonpositive and local or
to positive and nonlocal distribution functions. The local and nonlocal probabil-
itics in EPR corrclations arc similar to the one encountered if one uses coherent
states to study the harmonic oscillator problem. It is known that in this case
the same results can be obtained with different quasi-distributions (the so-called
P- or Q-representations, for example). This shows that quantum mechanics is
equivalent to a hidden-variable theory with nonpositive quasi-probabilities or to a
hidden-variable theory with nonlocal distribution functions. Which view we adopt
is quite irrelevant because the two pictures are equivalent and represent different
aspects of the same quantum mechanical reality. In the classical limit the EPR en-
tangled correlations lead to only “yes” or “no” outcomes involving classical antipar-
allel angular momenta. In this limit the local and the nonlocal quasi-distribution
functions become positive and local statistical distributions.
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