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REALISTIC MEASUREMENT OF PHASE
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The experimental schemes for measuring quantum-mechanical phase
properties of light suggested and partly also realized thus far, namely (i)
amplification, with the help of a quantum amplifier, of the microscopic field
before phase measurement, (ii) heterodyning the field with a strong local
oscillator, and (iii) performing two separate homodyne measurements on the
field after beam splitting, are compared from a theoretical point of view.
They share the common feature that undesired noise enters the experimen-
tal setup, which makes the measurement fuzzy. It will be pointed out that
all three schemes amount to measuring the Q function of the original field,
and hence are fully equivalent. Since the Q function can be interpreted as
a smoothed Wigner function, one may associate with the introduced noise
a smoothing process in which intrinsically quantum-mechanical features dis-
played by finer details of the Wigner function — especially by the occur-
rence of negative values — are lost. As a consequence, the measured phase
distribution will be broader than the "true" one based on the concept of a
quantum-mechanical phase operator. In realistic experiments, the nonunit
detection efficiency further deteriorates the measuring results. It will be
shown that also this echect can be properly described by an (additional)
smoothing process leading to a certain s-parametrized quasiprobability dis-
tribution, with a parameter s that is connected with the detection efficiency
in a simple way, as the distribution that is actually measurable.
PACS numbers: 42.50.Wm, 03.65.Bz 	 .

1. Introduction

The quantum-mechanical description of phase by introducing a Hermitian
phase operator [1] suffers, apart from the fact that this problem could be solved
in a perfectly satisfactory way only by resorting to a finite-dimensional Hilbert
space [2], from the lack of any prescription for an actual phase measurement,
even in form of a Gedanken experiment. Therefore, in order to make contact with
reality, one will have to turn the tables. One will flrst devise an experimental
scheme for measuring phase properties, thus giving an operational definition of
phase, and afterwards search for the proper quantum-mechanical description of
the experimental procedure. In fact, several schemes for phase measurement which
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differ distinctly in their experimental setup have already been proposed and even .

partly realized. We will describe them in some detail and afterwards present the
outlines of their theoretical analysis.

2. Measuring schemes

The first to discuss a realistic phase measuring device were Bandilla and
Paul [3], who as early as 1969 proposed to amplify, with the help of a laser (or
parametric) amplifler, the microscopic field to be investigated to a macroscopic
level, where classical phase measurement techniques can readily be applied. Since
any amplifier .unavoidably adds noise to the amplified signal, this type of phase
measurement is necessarily of noisy (fuzzy) character.

Fifteen years later Shapiro and Wagner [4] analyzed a heterodyne detection
scheme which allows simultaneous, however noisy, observations of both the phase
and the amplitude of a signal field. Their basic idea was to mix the signal, by means
of a weakly reflecting mirror, with a strong coherent field (local oscillator) whose
frequency is shifted by a certain amount Δv (see Fig. 1). The mixed field is sent to

a photodetector. Its photocurrent contains an alternating current oscillating at the
difference frequency Δv — it is just the beat signal — and the amplitudes of this
alternating current, corresponding to the components oscillating as cos(2πΔvt)
and sin(2πΔvt), respectively, are determined separately by well-known electronic
techniques (see Fig. 1). By repeating this measurement many times, one , can de-
termine a distribution function for those amplitudes x and p. Passing to polar
coordinates one gets a distribution function for both the amplitude (radius) and
the phase (polar angle) of the signal field. Averaging, in particular, .over the am-
plitude yields a phase distribution (cf. Sec. 3). It must be emphasized that also in
the present case undesired noise enters the experimental device. One has to notice
that a beat signal with beat frequency. Δv originates also from the field mode
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which is the image, with respect to frequency, of the signal mode (see Fig. 1), even
when this mode is empty. In this case vacuum fluctuations are still present which
get mixed with the local oscillator and thus make the measurement noisy.

Only recently, Noh, Fougéres and Mandel [5] (cf. also [6]) proposed and,
moreover, realized a different experimental scheme which is closely related to clas-
sical phase measurement. Hence its basic features can easily be understood. Let us
stress that even in classical optics there exists no device which allows to determine
the phase in a single measurement. The deeper reason for this is that radiation
interacts with matter only via the electric field strength in which phase and ampli-
tude are combined so that any single measurement yields a complex information on
both phase and amplitude. Hence, at least two different measurements are needed
to determine the phase and the amplitude separately. A simple way to do this is
suggested by writing the electric field strength as a sum of two components that
are in phase and out of phase, respectively, compared to a given reference field

Here, x and p are the socalled quadrature components of the field and C is a
normalization constant. It is readily inferred from Eq. (1) that cos  φ and sin φ can
be expressed through x and p as

Those formulas suggest the following scheme for phase measurement: measure
simultaneously x and p and calculate cos φ and sin φ with the help of Eqs. (2). In
practice, one will use a beam sputter and measure x and p separately on the two
outgoing beams.

Now one might ask, why cannot we use a similar scheme for a quantum
measurement of phase? At first sight, it seems impossible since x and p are ac-
tually variables that are canonically conjugate (they are similar to position and
momentum of a particle which explains also our notation) and, hence, cannot be
measured simultaneously on principle. But why should not we use a beam splitter
and measure x on one of the outgoing beams and p on the other? The answer is,
of course you can do this, but what you are performing in this way is a noisy mea-
surement of x and p. In fact, the beam splitter introduces additional noise since
a vacuum field enters its unused input port. So restricted accuracy is the price
one has to pay for a simultaneous measurement of canonically conjugate variables.
The actual measurement of x and p can be done utilizing a balanced homodyne
detection scheme (see Fig. 2). The signal is mixed with a reference field (local os-
cillator), and the two outgoing fields are made to shine on separate photodetectors.
The difference of the two photocurrents gives us, up to a factor, the quadrature
component x, and when one shifts the phase of the local oscillator by π/2 (e.g.
by inserting a quarter-wave plate), one measures p. Therefore, we arrive at the
measuring scheme sketched in Fig. 3. We will assume that the reference beams
are very strong, compared to the signal field, coherent fields so that the observed
phase properties actually reflect features of the signal field not distorted by the
reference fields. (It should be noted that in the actual experiments a weak local
oscillator was used which makes the theoretical treatment rather involved [5].)
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3. Theory

Let us now describe the aforementioned experiment in the quantum mechan-
ical formalism (see Fig. 3). Since the description of the action of a (lossless) beam
splitter takes its simplest form in the x representation, we will use the latter [7].

It is advantageous to represent the state of the incident signal field by a
Wigner function Pi(x1, pl) [8]. The vacuum field entering the unused port of the
beam splitter is characterized by the Wigner function

Ρvac(x2, p2) = π-1 exp [- (x22 + p22)] • (3)
The action of a beam splitter with transmittivity cost Θ is simply described by a
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rotation in the x1 , x2 — and the p1, p2 — plane [9]

where x'1, p'1 and x'2, ρ'2 are the quadrature components for the two outgoing beams.
For the special case of a 50:50 beam splitter (Θ = τ/4) Eqs. (4) reduce to

Bence the Wigner function of the total system (before detection) is given by

Pout(x'1, x'2, p'1, p'2) = P1(x1, p1)Pvac(x2, p2)• 	 (6)
Here, the variables x1 , p1, x2, p2 are to be substituted according to Eqs. (5). As-
suming that x'1 and p '2 are measured, we have to integrate over the remaining
variables x? and p'1 in order to get the probability distribution w(x'1, p '2 ) for this
simultaneous measurement. Considering the equations for x 1 and p 1 in (5) as sub-
stitutions, we may write the integral in question in the form of a convolution with
a Gaussian

Hence the measured distribution originates from the original Wigner function by
a certain smoothing process. The latter makes evident the noisy (fuzzy) character
of the measurement that is dne to the introduction of undesired noise. Actually,
the convolution (7) is just the (appropriately scaled) Q function for the incident
fleld

The phase distribution is readily obtained from Eq. (8) as a marginal distribution,
i.e. by introducing polar coordinates

and averaging over the amplitude p.
The smoothing process just described is actually associated with a certain

loss of information. Finer details of the Wigner function become lost — in par-
ticular, negative values must disappear since the Q function is positive definite.
Bence the measured phase distribution will be broader than that following from
the phase operator concept [1, 2]. .

From the formal point of view one might object that the Q function contains
precisely the same information as the Wigner function. This is true, however, only
when the Q function is known as an analytic fnnction since only in that case the
deconvolution can actually be performed.

Now, it is very interesting to note that both the amplification scheme pro-
posed by Bandilla and Paul [3] and the heterodyne-detection scheme discussed by
Shapiro and Wagner [4] have been shown to amount to measuring the Q function
of the incident field, too [10, 4]. Therefore we can state that those two approaches
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are perfectly equivalent to Mandel's procedure [5]. In particular, they all lead to
identical (measured) phase distributions, despite the significant differences in their
experimental setup and the physical processes involved. It should be noticed, how-
ever, that they actually share the common feature that undesired additional noise
is introduced either by beam splitting or by amplification.

At first sight, one might fmd  it surprising that those different sources of
noise should give rise to precisely the same enhancement of phase (as well as
amplitude) fluctuations, compared to the "true" fluctuations present in the original
fleld according to the phase operator concept [2]. It should be noted, however, that
formally amplifier and beam splitter noise share a common property. Both of them
enter, in the form of Langevin forces, the quantum mechanical equations of motion
just in such a way as to preserve the quantum mechanical commutation relations
for the photon creation and annihilation operators in the course of interaction,
either with the beam splitter or the amplifying medium. From this argument, one
may actually find the equivalence of all operational definitions of phase discussed
so far, rather quite natural.

4. The influence of nonunit detection efficiency

Thus far we have assumed that the observation is made with unit-efficiency
detectors. However, such ideal detection are not available in practice. (Note that
the effective detection efficiency n includes also losses, in particular those due to
mode mismatch.) It is well known that low-efficiency detectors play a deteriorating
role in studying quantum features. In the following, we want to give a quantitative
account of this effect in Mandel's scheme [5] (see also Ref. [11]).

4.1. Balanced homodyne detection

As is well known [12], a realistic detector can be modelled b y an ideal one
(n = 1) with a partly transmitting mirror (a special form of an attenuator) in front
of it. Hence, in the homodyne detection scheme such a fictitious beam splitter has
to be placed before each of the two detectors (see Fig. 4a). It is not difficult to show
that this setup can actually be simplified [ΙΙ]: one beam splitter attenuating the
signal before it is mixed with the local oscillator has the same effect (see Fig. 4b).

4.2. Beam splitting

In the present case vacuum noise enters the setup not only via the beam split-
ter dividing the incident field, but also via the two fictive beam splitters placed
before each homodyne-detection apparatus, according to the equivalent model in-
troduced above (see Fig. 5). The theoretical description is a straightforward gener-
alization of the procedure in Sec. 3. After some algebra one arrives at the following
simple result for the measured distribution (for details see Ref. [11]):
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While for n = 1 the right-hand side of Eq. (10) iss, apart from a factor of 2, just the
Q function for the initial field Q 1 (2-½ x "1, 2-½p"2) in accordance with Eq. (8), the
Wigner function for the initial field P1(x, p) becomes more strongly smoothed for
η < 1, which is just what one expects. It is interesting to note that integrals of the
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type (10) — the convolution of the Wigner function with a Gaussian — are spe-
cial cases of the socalled s-parametrized quasiprobability distributions W(x, p; s)
introduced by Cahill and Glauber [13]. Quite generally, those distributions are
connected through the following relation*:

Specializing to t = Ο we obtain from Eq. (11):

where P(x, p) = W(x, p; 0) is the Wigner function. Hence our result (10) can be
rewritten in the compact form

where W1 (x , p; s) denotes the s-parametrized quasiprobability distribution for the ,

initial field.

4.3. Amplification

In the amplification scheme [3] we have to calculate the Wigner function for
the (strongly) amplified field. First we calculate the Wigner function for the whole
field emerging from the amplifier which consists of a signal and an idler wave. Th
is done by replacing the arguments in the product of the Wigner function of the
incident signal fleld, Pi(x1, p i ), and the Wigner function (3) of the vacuum noise
being initially present in the idler mode, in the following way:

Here, the following abbreviations have been introduced:

where K denotes the effective coupling constant and Τ — the interaction time.
The Wigner function for the amplifled signal field is then readily found by

tracing over the variables for the unobserved idler, x2 and p2,

The amplified signal field will be taken as the input for the detection scheme
studied in Sec. 4.2 (see Fig. 5). Then we need only to make use of the former result

*See Eq. (6.32) in Ref. [13]. Our formula (23) diIfers from that equation in that x and p
instead of Rea(= 2-1x) and Imα(= 2- 1p) were chosen as arguments of the quasiprobability
distributions.
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(10) in order to obtain the measured distribution function w(x"1,p"2). Insertion of
the result (17) into Eq. (10) and substituting x'1/C = x,p'1 /C = p gives us

Utilizing the general formula (11), we arrive at the final result

which clearly exhibits the deteriorating effect of nonunit-efficiency detectors. It
becomes evident, however, from Eq. (19) that one can tolerate low detector effi-
ciencies, when there is strong enough amplification (C » 1). Therefore, from the
practical point of view, the amplification scheme for phase measurement is, in fact,
superior to the approach based on beam splitting.

To summarize, we have demonstrated that the experimental approaches to
phase measurement discussed and partly realized thus far, are physically equiv-
alent. All of them amount to measuring the Q function of the initial field from
which the phase distribution follows as a marginal distribution. In the theoretical
analysis, however, the unrealistic assumption was made that unit-efficiency detec-
tion are used for the observation. In the second part of the paper the deteriorating
effect of low-efficiency detectors on the measurement result was properly taken into
account. It was shown that this effect gives rise to an additional smoothing process.
What proves to be actually measurable is certain s-parametrized quasi-probability
distributions instead of the Q function.
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