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We present a review of recent experimental and theoretical attempts
to realize and investigate Bose-FEinslein condensation in systems of cooled
alkali atoms. We discuss a second quantized theory that describes quantum
optics of such systems. We study in detail: (a) the weak field scattering off the
condensate; and (b), the probing of the condensate with short laser pulses.
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1. Introduction

Fashion has been a very important motivation of people’s activity in general,
and in science in particular. One such “scientific fashion” that came and went sev-
eral times during the last half of the century concerns Bose-Einstein condensation
(BEC). The most recent return of the BEC fashion deals with various systems
of trapped and cooled atoms [1]. Several experimental groups have attempted to
rcalize the BEC [2-4] in such systems. According to experimentalists [5], within
onc year we should at least know whether the conditions for condensation are
experimentally accessible.

Independent of whether this goal is achieved or not, reliable methods must be
developed to detect and diagnose dense systems of very cold atoms. In particular,
the quantum statistical character of atoms as bosons or fermions may start to play
a crucial role under such conditions. For this rcason, we tend to view the theory
that we describe below as a new area of quantum optics and atomic physics —
quantum field theory of aloms inleracling wilh light, or, as some authors call it,
nonlinear alom optics [6]. So far the literature on the subject is not very large.
Refs. [7-11] deal with the problem of light scattering off a condensate. Lenz et al.
describe nonlinear quantum statistical effects in the propagation of atomic waves.
Cirac et al. [12] study cooling processes in very small traps that lead to an infinite
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sequence of condensations. In contrast, note the number of papers accepted by or
submitted to Physical Review Letlers in this year!

The present paper has the character of review and is organized as follows.
First, in Sec. 2, we outline some basic facts about Bose-Einstein condensation.
Then, in Sec. 3 we describe various experiments attempting to achieve BEC. In
Sec. 4 we focus on experiments.on cold alkali atoms in traps. We present basically
“the view from JILA” and describe experiments being done there [13]. In Sec. 5
we introduce the quantum optics of BEC and explain its goals and tasks. Section 6
contains a short discussion of the regimes of parameters accessible experlmentally
In Sec. 7 we describe the second quantized theory of a system of cold atoms in a
trap. Finally, in Secs. 8 and 9 we discuss two examples of scattering processes off
such a system: weak field scattering [11], and scattering of short, but intense laser
pulses [10]. We conclude in Sec. 10. -

2. Bose-Einstein condensation

The aim of this section is to remind the reader of basics of the theory of BEC.
We base our discussion on the seminal paper by de Groot et al. [14]. Let us consider
a system of non-interacting particles (bosons) of mass M in a box. Assume that
the system is in thermal equilibrium with its surroundings. According to general
laws of statistical mechanics, the state of the system can then be descnbed by the
Bose-Einstein distribution (BED), : : :
—-E;/ksT
ﬁ_;_s_ (1)
ze—Ei[ksT’
N; = N(E;) denotes here the mean number of particles occupying the state of
energy E;, kp is the Boltzmann constant, and T is temperature. For simplicity, we
assume that the (nondegenerate) ground state energy Ep is zero. z denotes the,
so called, fugacity, and is related to the chemical potential g < 0 via the relation
z =exp(p/ksT). There is an additional constraint in the system, due to the fact
that the number of particles in the box, N, is fixed. Therefore

ZN,- = N. - | | (2)

N(E;) =

Alternatively we may write the above equation as,
~E;[kpT
Zl_ze—E/kBT"N"'*‘ZN (3)
i>1 '
The la_tter equation may be viewed as an equation determining the chemical po- -
tential g (or fugacity z) as a function of T and N. For example, in a box of linear
size a the energies are

o B (G 1)+ G2+ 1)+ (3 + 1)~ 3
5= gz ( . o @
where i1,12,i3 = 0,1,2,... The corresponding plot of fugacity is shown in Fig. la.
- It was Albert Einstein [15] who observed in 1925 interesting properties of
this system in the thermodynamic limit as N and a tend to infinity, such that
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f.he particle density n = N/a® remains constant. As we see from Fig. 1a, there
is a critical temperature Ty below which z = 1. In the low temperature phase a
macroscopic number Ng of particles condense in the ground state (see Fig. 1b).
For the case of particles in a box No/N behaves as 1 — (T/Tp)3/2.
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Fig. 1. (2) The temperature dependence of fugacity is shown. Dashed line denotes
the result for a finite system with N = 100, while the solid line represents the result
in the thermodynamic limit with same fixed density; part (b) shows the temperature

dependence of the condensation.

This phase transition has been termed Bose-FEinslein condensation and has
created a lot of discussion and interest [16, 17]. It has rather unusual properties: it
occurs in a system of noninteracting particles and is thus a direct consequence of
quantum statistics; there is no spatial phase separation, no latent heat, and even
no discontinuity in the specific heat. For potentials other than the box potential
there are problems with defining the thermodynamic limit since the size of the
system is not so precisely defined [14].

There is an heuristic approach to the problem of BEC, which although it is
not as precise, it gives a lot of insight into the physics of the problem. Namely,
for any potential in the “thermodynamic” limit, we may assume that the energy
level spacings are small and substitute sums by integrals in Eq. (3). Introducing
the density of states p(E) we obtain

N=No+ /o :o dE N(E)p(E), | (5)

where 0+ denotes the exclusion of the ground state.
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For instance, for any potential in 3D we have

o) = ZOT [ w0r BV, ©)
h V+(E)

where V*(E) denotes the accessible region in configuration space. For the case of
a box in 3D we thus have
2m(2M)3/2 ‘
p(E) = %—V VE, (1)
where V is the volume of the box. Inserting the above expression to Eq. (5) and
letting p — 0, T — Tp, we find the analytic expression

2.612V
- A(T0)3 ’ (8)
where
h
- = 9
A(T) (2r M kpT)1/2 )

is the thermal de Broglie wavelength, i.e. the de Broglie wavelength of a particle
that has kinetic energy equal to kT

Equation (9) has very important physical consequences, since it is qualita-
tively valid for any potential [18]. It states that the BEC occurs when the density
of atoms is such that their thermal de Broglie wavelengths overlap. This is the pa-
rameter region in which one should start looking for condensation. Unfortunately,
present experiments on cold atoms are at best two orders of magnitude away from
the transition region, either in terms of densities or temperatures.

3. Experiments on BEC

Since the discovery of the BEC, experimentalists have been trying to realize
it in the laboratory. The first candidate was liquid helium He?, which undergoes
a superfluid transition at low temperatures [19]. Bogolyubov proposed in 1947
[20] to describe this system as a dilute, weakly interacting Bose gas. Bogolyubov’s
theory did predict some features of the superfluid transition quite well, but soon
it was realized that its agreement with experimental data was rather accidental.
Liquid helium Ie? is in fact characterized by very strong interactions between the
atoms, and the phase transition is characterized by the, so called, off-diagonal long
range order (ODLRO) [21] and cannot be really identified with BEC (see [19]).

The BEC came to fashion again in 1980, when Hulin et al. [22] discovered
that excitons in CuzO obey Bose-Einstein statistics of a (practically) ideal gas.
There are two kinds of such excitons, ortho-ezcitons with spin 1, and para-ezcitons -
with spin 0. Both kinds are characterized by high mobility and relatively long life
times. Since 1980 many experiments have been done, but only recently, has the
BEC of para-ezcitons in stressed CupO apparently been observed [23]. ’

Another candidate for BEC is a gas of spin polarized hydrogen atoms, studied
by the groups at MIT, Harvard and in Amsterdam [3, 4, 24]. In this case one can
try a straightforward method — put the gas into a box with the piston, cool it
and compress it in order to achieve the required density. Unfortunately, hydrogen
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atoms have a tendency to stick to walls and form solid hydrogen clusters. These
problems might be overcome by using non-stick walls. Despite valiant attempts,
however, the BEC of spin polarized hydrogen has not yet been observed.

Finally, several groups [2, 13, 25] are attempting to realize the BEC in a
system of cooled alkali atoms using combinations of recently developed methods.
Atoms are trapped optically and cooled using the Doppler cooling to about 250 2K,
Atomic molasses are then formed and cooled further with the help of the polar-
ization gradient cooling and the Sisyphus effect. This technique allows in principle
velocities of the order of v » 3hkr/M to be achieved, where k is the photon
wave number. This corresponds roughly to the energy of photon recoil and a tem-
perature of the order of few pK. All of these methods are thoroughly discussed
in Ref. [1]. Also, magneto-optical traps (MOT’s), such as the ones at JILA [13],
combined with the method of evaporative cooling are being used. We discuss these
techniques in detail below.

4. Cooled atoms in traps

Magnetic traps are based on a very simple principle. Energy levels of alkali
atoms in magnetic field undergo Zeeman splitting. The potential energy in the
magnetic field B is just —u - B, where p is the total magnetic moment. A typical
behavior of energy levels is represented in Fig. 2. There are “weak field seekers”,
that can be confined to local minima of B, and “strong field seekers”, which
actually cannot be trapped in static fields.
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Fig. 2. Typical level structures of the trapping states, illustrated by cesium 65/,
Zeeman energy level structure.

In the experiments, the magnetic field is appropriately designed to form
an effective potential, which can be well approximated by a harmonic potential
close to its minimum. The potential forms, however, a finite barrier. Both the
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height of the barrier, as well as the curvature of the potential at the minimum,
which determines the frequency of atomic motion in the trap, can be controlled.
The experimental set up used in JILA is shown schematically in Fig. 3. Note the
anti-Ielmholtz coils that counteract the gravitational force.

ﬂ
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Fig. 3. Illustration of a baseball coil magnetic trap configuration. The baseball coil has
a radius of 2.25 cm. The pair of anti-Helmholtz coils generates a magnetic field gradient
which cancels gravity.
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The fact that the potential has a finite barrier is used for the evaporative
cooling, first developed by Kleppner’s group at MIT. Suppose we have some atoms
in the trap at the temperature 7. When one lowers the barrier to the height of
few kpT, the hottest atoms leave the trap, and cooling occurs. Although one loses
part of the atomic population, the system is cooled very cllectively to a few K or
even less. Experimentalists hope that the use of MOT’s and evaporative cooling
will allow for realization of the BEC of cooled alkali atoms.

5. Quantum optics of a Bose—Einstein condensate

We now turn to the main topic of this review, i.e. the quantum optics of a
BEC. We shall not discuss any more, how to achieve and realize the condensation.
We shall assume that it is possible and try to answer the question of how to probe
and diagnose the system in the condensed state. Obviously, this task should be
achievable using optical methods, such as light scattering off the system. In order
to describe such processes, however, we have to develop an ‘appropriate theory
that takes into account the quantum statistical properties of atoms as bosons. A
natural framework for such a theory is provided by second quantization and other
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standard methods of many body physics [19]. From that point of view, such a
theory has a more general scope — it describes not only quantum optics of BEC,
?u;; 1s, generally speaking, a quantum field theory of cooled atoms inleracling with
wght.

After introducing the second quantized theory, we will discuss two examples
of its applications: weak field scattering off the BEC, and scattering of short intense
pulses off the system of cooled atoms.

6. Regimes of parameters

Before we start the discussion of the quantum field theory of the atoms,
it is useful to specify regimes of parameters that are accessible experimentally,
in particular for the magneto-optical trap developed at JILA [2, 13], discussed
above. The potential for the atomic center-of-mass motion for a single atom in
its ground clectronic state can be well described by a harmonic oscillator poten-
tial of frequency w; x (27x)10 Hz. Although the potential forms a finite barrier
only, several thousand energy levels exist within the trap. By exploiting the evap-
orative cooling technique, the trap can store about 10® cesium atoms, which will
interact with resonant light of frequency ~ (27)4.0 x 101 Hz. A typical photon
recoil energy will then be ~ (27)2 kllz, whereas the natural linewidth (ITWIIM)
v & (27)2.5 MITz. The size of the ground statc wave function for the conden-
sate is expected to be @ > 10~ m, in comparison with the resonant wavelength,
A = 800 nm. We note that a for the ground state of the condensate is several
times bigger than 1/\/2Mw; with M being the mass of Cs. The a we use takes
into account the (expccted) repulsive ground state interactions, which are believed
to increase the size of the condensate [26]. Such a change in potential is equivalent
to replacing w, by an eflcctive trap frequency weg. Both wer and a = 1/v/2Mw.r,
can to some extent be controlled in the experiment. In general, atoms in excited
electronic states move in different potentials from that characterizing the ground
state. In this paper, we consider the case of no potential in the excited state, and
comment on other cases.

7. Second quantized theory

The quantum field theory of atoms interacting with light can be constructed
using standard tools of many body physics. We start from first quantized thcory,
and then introduce appropriate sets of atomic creation and annihilation operators
etc. The details of the construction are described in Ref. [27].

The IMamiltonian governing the evolution of atoms in the trap takes the
following second quantized form in the rotating wave approximation (RWA) and
in atomic units:

H= ZE yn9n+Z(E$n+wo)emem+Z/d3k cLaI' ap,

+ Z Z/dalQ(L) [nnm(k)gna em - ek# + h. C] + He, | ‘(10)

nm pu
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where gn, gIL denote atomic annihilation and creation operators for the n-th state
of the ground state potential. For a rotationally invariant potential, n is actually
a triple index (ng,ny,n;). The corresponding energy is E, = wi(ns + ny + n.).
em, e.;[n denote atomic annihilation and creation operators in the excited state
potential. In the case of no potential they annihilate and create plane waves of
momentum m. The corresponding energies are Ef, + wp = m2/2M + wy, i.e.,
are shifted by the electronic transition frequency. We consider here the case of

a transition from an s-state to a p-state and therefore the em’s and e;[n’s have
a corresponding s—p vector character. This is not the case for the transition in
a typical alkali atom, but the character of the transition is not essential for our

conclusions. aj, " and aI’ denote annihilation and creation operators for photons of
momentum k and linear polarization £, " (# = 1,2). All operators fulfill standard
bosonic commutation relations. The coupling g(k) is a slowly varying function of
k related to the natural linewidth v = (872k2/3c)|e(ko)|?, with ko = wo/c. The
matrix elements nnm(k) describe the transition from the n-th state of the ground
state potential to the m-th state of the excited state potential,

() = (nle™* Flm). (11)
These matrix elements are analogous to the Franck—-Condon factors.

The last part of the ITamiltonian, which has to be included when the dipole
approximation is used [28] is usually neglected, since it describes the contact in-
teraction between atoms in the excited and ground states. In the case of atoms
moving or even condensing inside a trap, such a procedure cannot be justified,
since the atomic wave functions may well overlap. Only if the contact term is
taken into account, does the total Ilamiltonian include fully the strong resonant
atomic interactions due to electronic dipole-dipole forces and exchange of trans-
verse photons* [29].

In the first quantization picture the contact term has the form

HE =dne? )z - z;8(Ri - Ry), (12)
i#j
where z;’s and R;’s are electronic and atomic position operators respectively. In

the second quantized form the contact term can be conveniently written in the
coordinate representation, when we introduce atomic fields

Yg(R) =) (Rln)gn, - (13)

n
Pe(R) =) (R|m)em, (14)
m
and their Hermitian conjugates. In terms of these fields the contact term is
He = 4nd® [ SRYJRIPHER) -4 (R)Yy(R), (15)

where d is the absolute value of the dipole transition moment.

*The elimination of the electromagnetic field from the theory described by Eq. (10) leads to
an effective field theory of interacting atoms, called in Ref. [6] nonlinear atom optics.



Quantum Oplics of a Bose-Einstein Condensate 181

Beyond the dipole approximation, there are other interaction terms that
should be added to the Hamiltonian (10) that describe short range collisions of
- atoms (in ground-ground and excited-excited electronic states). We shall neglect
them in the discussion below, although we are fully aware how important they
could be, especially since the condensation can only be achieved for a positive
scattering length. Perhaps the most challenging task of this new theory is to study
the role of inter-atomic interactions in the formation of the condensate and in
optics of the system.

8. Weak light scattering at 7' = 0

The first application of the above theory concerns the scattering of weak,
monochromatic laser light off a condensate at zero temperature (see Fig. 4). In
such a case all atoms are condensed in the ground state of the center-of-mass
motion, and we may expect that the interaction with the laser will only slightly
perturb this state.

Delectors

Laser light v
ie .

Condensate

Fig. 4. Schematic illustration of light scattering off a condensate.

Therefore, for this weak light scattering study at T = 0, we assume a lin-
earization of atomic amplitudes around the ground state, and substitute the gn’s
by their appropriate initial mean values [7, 9]:

(gn) — SpoVN. (16)

This linearization has been used by several authors, and has led to several
interesting predictions. Politzer ([7], see also [8]) considered the limit of an infi-
nite trap, i.e. in the absence of any trapping potential. The model then becomes
invariant with respect to space translations and momentum must be conserved.
In such a case, atomic and photonic degrees of freedom mix, giving rise to a band
gap in the excitation spectrum. This is an optical analogue of polariton formation
or the Anderson-1liggs phenomenon [19]. The two branches of the dispersion re-
lation, that occur in some regions of momentum are identified as “photonic” and
“atomic”, and are shown in Fig. 5. Because of the band gap in the spectrum the
resonant light will be strongly reflected back from the sharp boundary of the con-
densate. Unfortunately, this interesting conclusion does not have much relevance
for the traps currenily being investigated. As we have noted, they have a finite
size (a few microns) and no sharp boundaries. As we shall see below, the light from
realistic traps is scattered primarily in the forward direction and only deflected
from the forward direction by a small angle of the order of 1/(kLa)?.
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Fig. 5. In the case of no trapping potentials, the photonic degree of freedom (slanted
solid line) mixes with the atomic excitation (solid line) to generate two branches of
polaritons (represented in dashed lines) due to field-matter coup]ihg. A band gap in
frequency (energy) is formed that covers all the k space. Within this gap region, no
propagating light modes are supported, thus resulting in a total reflection of incident
light.

Javanainen [9] has tried to describe a realistic trap, but made another sim-
plification, namely describing the atomic field as just one harmonic oscillator,
corresponding to a collective excitation. In this way he neglected the differcnce
in propagation of different spatial modes through the medium. As a result, in
the steady state, a small number of atoms remain in the excited state, and the
number of scattered photons has a resonant Lorentzian shape as a function of the
frequency of the incident light. The width of this Lorentzian is yeq = 3Nv/2(kLa)?,
i.e. it is roughly a cooperative spontaneous emission width decreased by the factor
1/(kra)?, which accounts for the fact that cooperative emission only takes place
into a limited cone in the forward direction due to approximate momentum con-
servation. As we shall see below, Javanainen’s theory, in addition to its appealing
simplicity, predicts accurately the overall scale of the spectrum, and in fact should
work well in the limit of optically thin condensates (i.e. when a — 0).

We have tried to solve this problem [11] without any other approximation
apart from the linearization (16). Upon eliminating the atomic excited state op-
erators, a scattering equation for the field amplitude can be derived. It takes the
form '

: ‘
iy, = —ickay, ~ > / ar /0 AUK(E— 15k, p By f)age , (2). (17)
I .

The kernel K(t — t'; k, pu, K, ') can be evaluated analytically in the case of no po-
tential or a harmonic potential in the excited state (for details see Refs. [11, 27]).
Here we stress only that the kernel in Eq. (17) has a simple physical meaning. It
describes the amplitude of the process of absorption of a photon with momentum
k' at time ¢, accompanied by the formation of a wave packet in the excited state
potential. This wave packet then undergoes evolution in the excited state manifold
until it recombines to the ground state at time ¢, emitting a photon of the momen-
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tum k. The evolution includes the free part and the effect of the contact potential.
Note, the free evolution of the wave packet in the time interval 7 = ¢ — ¢/ consists
primarily in quantum diffusion plus drift due to the momentum of the absorbed
photon*. When the wave packet drifts away from the center of the trap and diffuses
sufficiently strongly, the recombination accompanied by emission becomes impos-
sible. The kernel K(t—t'; k, 1, ¥, p') thus decays on a characteristic time scale 1/1".
It is easy to check that I' must be of the order of kaweg = \/m , 1.e. the
reciprocal of the time to drift a distance a.

One might try to solve Eq. (17) using the Born approximation, i.e. treating
perturbatively the self-energy term on the right hand side. Such an attempt fails,
due to the optical thickness of the condensate. Self-energy terms are extremely
Important close to resonance and one has to fully account for them. We have solved
Eq. (17) numerically in the on-shell approximation to the scattering matrix [30].
We discretize the solid angle and solved the resulting finite set of linear equations.
However, we can also construct an approximate analytic solution of Eq. (17) in
terms of partial waves, provided we neglect the dependence of the kernel £ on
the polarizations €}, . This is a good approximation, since the scattering occurs
mainly in the forward direction and the scattered photons have polarizations that
are approximately perpendicular to kg, and do not couple to one another.

The quantity of interest is the normalized scattering cross-section, i.e. the
total number of scattered photons of the frequency w,, per time and normalized to
the total number of photons incident onto the area ma? (normalized cross-section).
We denoted it by o. It is plotted in Fig. 6 for the case of N = 107 atoms. The
overall scale of the spectrum is the same as predicted by Javanainen, and for the
parameters used is of the order of 10 GHz. The spectrum, however, is evidently
non-Lorentzian and exhibits a very narrow structure at the resonance of the width
of the order of I" = 800 Hz. :

The narrowing of the spectrum is somewhat reminiscent to Dicke’s coherent
narrowing [31]. The spectrum is in fact a sum of Lorentzians corresponding to
different partial waves. The waves characterized by low angular momenta [ con-
tribute with a more or less constant width = v.¢ to the cross-section. The waves
with high I require more and more time to become scattered and contribute with
the decreasing widths.

Summarizing, the line shape from the BEC has thus two appealing proper-
ties. First, it exhibits a very broad resonance of the width yeq. In order to detect
even a partial condensation it will be sufficient to shine strongly detuned light onto
the system of cooled atoms. Those of them which are not in the condensate phase,
will be essentially transparent to such a light and will not contribute any undesired
background. Condensed atoms will, however, still produce quite a strong signal.

Second, the narrow feature (800 Hz) in the spectrum at wy, & wo suggests ob-
vious applications of this system to precision spectroscopy. This is a rare example
of a situation where such narrow resonances are present in the line shape, and yet
the response of the system at these resonances is strong, and contrasting strongly

*That is evidently true in the case of no potential in the excited state, but is also true in the
case of harmonic potential if 7 € 1/w¢. In the latter case, the wave packet does not have time
to reverse its motion and give rise to back scattering.
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Fig. 6. Scattering cross-section off the BEC for N = 107 (other parameters as given
in the text). Part (a) shows the overall shape, part (b) is an enlargement of the central
region.

with the response far from them. One should stress, however, that our theory ne-
glects several broadening mechanisms (such as for example spontaneous emission
to non-condensate states) which may aflect the width of the narrow feature.

9. Scattering of short laser pulses

The second application of the theory formulated in Sec. 7 concerns scattering
of short laser pulses off the system of cooled atoms [10]. If such a pulse is strong
enough and short enough, we may neglect both spontaneous emission effects and
dipole-dipole interaction, and substitute the electric field operator entering the in-
teraction HMamiltonian in Eq. (10) by a c-number. The pulses should have duration
300-10 ps or shorter, i.e. width yp &~ 3 x 10%-10'! Hz. The first estimate shows
that indeed vz >> 7, i.e. the spontaneous emission may be legitimately neglected
during the time of interaction of the pulse with the atoms. Note, however, that this
estimate might be misleading actually, since the atoms will respond collectively
and we should compare v to the eflective spontaneous emission rate 7eg. Fortu-
nately, as discussed in previous section, the latter is of the order of few GHz, so
that the condition 41, > ve still holds. We will nevertheless check our assumption
self-consistently in the following, by assuring that the total number of emitted
photons Nio is much smaller than N (in this way the probability of spontaneous
emission of a given atom is small).

Under these assumptions, we substitute the electric field operator multiplied
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by the absolute value of the electronic transition dipole moment by -
= 0 ' ; fok
aE® - 2 ; / &k g(k, p)eik Boiekt (18)

where £ is the peak Rabi frequency of the laser pulse. The function g(k,u) de-
scribes the (k, u)-dependent envelope of the pulse. We assume that the pulse has
the form of a plane wave packet moving in the k; direction with central frequency
wr and linear polarization ey, so that

dEH) - EEL.F (ve(t — kL - Rjwr)) eike-R-iwst, (19)

. Here, F(7yrt) is the temporal envelope of the pulse chosen to be real and assumed
to have a bell-shape with a maximum at ¢ = 0 equal to 1.

The theory simplifies even further when we observe that the ground state
annihilation operators couple in the Hamiltonian (10) to the linear combinations
of excited state operators

gn — Z mmm(k)em. (20)
m .

For the parameters considered, the momentum spread in the pulse is much smaller
than the characteristic scale of momentum change in the Franck-Condon factors
nnm(k). We may thus substitute Y, nnm(k)em by 34 num(kr)em and in-
troduce wave-packet operators

fn =2 nmmm(ks)em, (21

and their Hermitian conjugates fL, respectively.
The Heisenberg equations of motion are now linear and at résonance and in
the rotating frame take a very simple form

gn = —1"2—-7:(7Lt)5L Jns

e1 o= ~ig Flnt)n, (22)

with other components of f;; which are left intact. These equations may be easily
solved analytically for any pulse envelope with the initial condition for the ground
state populations corresponding to the Bose-Einstein distribution.

The physical picture of the process is the following: each of the n-th levels of
the ground state oscillator (when populated) create an independent wave-packet
Fn- The population then oscillates coherently between the ground state and n-th
wave packet. The system behaves as a set of independent two-level atoms co-
herently driven by the laser pulse. If the area of the pulse is a multiple of 27 the
system will be left in the same state after the pulse is over as it was before it came.
Obviously, as n grows the approximations that we have made become worse, but
they should hold very well for the lowest ~ 10* states of the ground state potential
that are available.

Of course, in reality the atoms will scatter photons since ¥ is non-zero. The
resonance fluorescence (RF) from a single atom driven by a short pulse has been
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studied by Rzazewski and Florjariczyk [32]. They have shown that the RF spec-
trum consists of 2K — 1 peaks, provided the pulse area is 27 K. Physically multiple
splitting results from temporal interference eflects, as photons emitted during the
interaction with the pulse interfere one with another. These results were then
generalized to include non-zero detunings, dissipation and various pulse shapes
(hyperbolic secant, exponential pulses, chirped pulses etc.) [33]. The total number
of photons emitted in such a process is typically of the order of v/7L-

In the present case, the quantities of interest are: the photon spectrum de-
fined as the total number of scattered photons of momentum & and polarization u:

Clh ) = Jim (o], Do, ) (23)

and the total number of scattered photons Niote =, u J d3kC(k, ). The spectrum

C(k, p) consists of coherent and incoherent parts. In the low temperature limit the

coherent part gives the dominant (o< N?2) contribution to the fluorescence. '
For T > Ty the coherent part of the spectrum becomes

Ceon(k, 1) = Scon((ck — “’L)/')’L)Nz exp (—2a2(k - kL)g/ﬁwt) ] (24)

where Scon((ck —wr)/7L) denotes the single atom coherent spectrum [32, 33]. For
T 10 pK, Pw; = 5 x 10~% and the scattering will occur practically in the forward
direction and will cover only a solid angle with half-angle < 1.0 x 10~4. The total
number of photons remains very small in this regime. Physically, the reason is that
in the high temperature limit the atoms behave as independent random scatterers.
The radiation from different atoms interferes destructively in all directions, except
in the vicinity of the forward direction where the constructive phase matching
takes place. The picture remains essentially the same as T" approaches Tp.

The situation dramatically changes when T' < Tp. The spectrum will contain
a new term arising from the condensate. Assuming that on the average Np atoms
form a coherent wave packet of width a occupying the lowest energy state with
n = (0,0,0), we obtain for the coherent part

Coec(k, 1t) = Scon(w@)NZ exp (—a®(k— k)?). (25)

As we would expect, the coherent scattering now covers a much larger solid angle
with half-angle ~ 1.0 x 10~2. At a distance of 1 m from the trap the scattered
photons will be about 1 cm from the optical axis. The total number of such photons
grows also dramatically as No grows and T decreases, but remains smaller than
N in the considered regime of parameters.

The above results are illustrated in Figs. 7 and 8. In Fig. 7 we show the
dependence of Nio: on Ny for 100 ps and 10 ps pulses. Both plots were calcu-
lated for a hyperbolic secant pulse of area 2r and N = 108. Since Ny is a unique
function of temperature, one can view the plots as representing temperature de-
pendence. The transition point is clearly visible. For 100 ps pulse (and even more
so for 10 ps pulse), our theory is valid down to T' = 0, since Niot/N remains
smaller than unity. In Figs. 9 and 10 we show a 3D plot of the scattering am-
plitude F(w,0)/N as a function of frequency and scattering angle. The spectrum
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Fig. 7. Dependence of the total number of scattered photons on the condensate occu-
pation for 7, = 100 ps. ‘
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Fig. 8. Dependence of the total number of scattered photons on the condensate occu-

pation for 7p = 10 ps.

is equal to the square of F'(w,0), multiplied by the single atom spectrum, i.e.
Ceon(w,0) = |F(w, 0)|2Scon(w). The plot in Fig. 9, corresponds to Ny = 107°N,
i.e. a temperature close to the critical point, whereas in Fig. 10 for Ny = 0.5N we
have T < Tp. Clearly, the angular distribution changes dramatically and exhibits
a broad component that indicates scattering from the condensate.

To summarize this section, we have demonstrated that by scattering from
short laser pulses of area 27K we may detect the onset of the Bose-Einstein
condensation. In the regime of validity of our theory, 2w K pulses leave the sys-
tem of trapped atoms to a large extent unperturbed. This is particularly true for
T > Tp. As T becomes smaller than Tp, the angular distribution of scattered pho-
tons, as well as their number, change dramatically. Scattering of short laser pulses
on systems of trapped atoms thus provides an alternative way of detecting the
actual state of the system, i.e. its temperature, degree of condensation etc.
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Fig. 10. Scatlering amplitude F(,w) for No = 5 x 107 = N/2.
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10. Conclusions

We have presented some recent developments of a new area of quantum
optics and atomic physics: quantum field theory of aloms interacting with light.
The methods of many body physics have to be introduced and used in this area.
Let us, however, also express the hope that, in the future, the applications of tools
of quantum optics (such as, for instance, those associated with quantum noise,
quantum stochastic processes and master equations [34]) will contribute to the
development of many body physics!

We thank all members of the BEC Seminar at JILA for enlightening dns—
cussions and comments. M.L. thanks JILA for hospitality and the financial sup-
port of his visiting fellowship. L.Y. and J.C. are supported in part by NSF grant
PIHY90-12244 through the University of Colorado.
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