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CORRELATION? WHAT CORRELATION?
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We describe recent developments in the theory of multi-electron atoms in
strong radiation fields, with particular focus on the degree of e-e correlation
accompanying a laser-atom interaction.
PACS numbers: 32.80.Fó, 32.80.Rm, 42.50.Hz

In a series of papers [1-5] we have explored the response of a one-electron
atom to intense short-pulse laser fields in a reduced-dimension atom model. This
1D "atom" appears to be reasonably realistic, at least in the presence of powerful
linearly polarized laser light that induces the single electron to oscillate along the
polarization axis. The binding potential for this model is (in atomic units)

V(x) = -1/ ✓x 2 + 1. (1)
Our atom can be said to represent hydrogen, but the lack of singularity of V(x)
near to x = Ο makes it more like an alkali atom with a single electron outside a
large frozen core. In any event, the simplicity of a single space dimension makes
the integration of Schrödinger's time-dependent wave equation numerically feasible
over a very large spatial grid, even for laser fields so strong that perturbation theory
is unreliable. Using the numerically exact time-dependent fleld-dependent wave
functions obtained in this way for this atom, dynamical features of above-threshold
ionization, high-order harmonic production and atomic stabilization have been
studied in close detail [1-5].

More recently we have begun to use the same potential in the two-electron
case. A solution of the two-electron Schrödinger equation is significantly more
challenging of computer resources, and it is not yet feasible in three space di-
mensions without basis-set restrictions. However, some progress can be made
one-dimensionally, and preliminary results have been reported [6-9]. If we label
the two electron coordinates by x and y, the natural two-electron potential is

V(x, y) = -ZV(x) - ZV(y) + V(x - y), (2)
where V is as given in (1), and Z is the nuclear charge. Of course the important
new feature here is the electron-electron repulsion term. We point out that in this
model the e-e repulsion obeys the same potential as the electron-nuclear attraction,
as in real atom.

The first task is to understand the stucture of such an atom, so we have
solved the time-independent Schrödinger equation to find eigenvalues and wave

(151)



152 J.Η. Eberly

functions for the lowest bound states as well as appropriate continuum states.
This is done directly numerically [9] on the x-y spatial grid without basis state
expansions or assumptions. To do this systematically we first discard the e-e re-
pulsion and find the energies for the fully decorrelated two-electron atom. Then
the repulsion term is added back, but multiplied by a small numerical parameter
G. For very small G the exact energies deviate only little from their uncorrelated
values, and they can be checked against perturbation theory, so their labels (quan-
tum number assignments) are not ambiguous. A small increase in G gives a new
set of energies, easily connected to the previous ones, and so on until the desired
physical value G = 1 is reached. Figure 1 shows this progression of energies as a

function of G for the negative ion case, when Z = 1. This is the most interesting
case because the e-e correlation is the strongest. The most prominent identifying
feature of negative ions in the real world of 3D atoms is their single bound energy
level, and we see from Fig. 1 that our 1D model·shares this feature: by the time the
threshold value G = 1 is reached, all but one of the bound energies have passed
into the continuum.

The existence of a strong e—e correlation in the model makes it an ideal
"laboratory" in which to test the effect of correlation during an intense and short
laser pulse. The interplay of the two electrons during laser excitation is shown in
Figs. 2 and 3. Figure 2a shows the detachment probability of the "outer" electron
as a function of time for three different electric field strengths (in a.u.), and it is
clear that as the electric field strength is increased the detachment process occurs
more and more rapidly. For ε = 0.01 a.u. the electron is completely detached
(probability equals 1) by t = 10 optical cycles. However, note that Fig. 2b shows
a decreased detachment probability for an electric fleld strength still larger by a
factor of 2. This reversal of form, i.e., the decreased ionization with increased field
strength, is one indication of atomic stabilization, calculated by us for the first



time for a two-electron system [7]. Figure 3 slows some of the same data in its
spatial representation. Tle two spatial probability distributions correspond to the
temporal probabilities of Fig. 2 at the time t = 13 cycles for the two highest fleld
strengths shown, namely ε = 0.01 and 0.02 a.u.

Another example of e-e correlation first reported by Grobe and Eberly [8] can
be termed coherence transfer by e—e correlation. In Fig. 4 there is a two-electron
energy level diagram. The right side shows the single discrete state and the one elec-
tron thresholds above it, while the left side pretends that energies can be labelled
as belonging to "outer" and "core" electrons (ignoring the fact that our wave
functions are properly symmetrized), in order to represent more pictorially the
phenomenon of interest, in which the outer electron is being photodetached while
the core undergoes resonant excitation. The photodetachment energy spectrum is
shown split into two peaks, which we have called a coherence transfer doublet. A
core resonance was predicted by Knight to lead to a split photo-spectum many
years ago [10], but the "Knight doublet" is a one-electron effect. In Fig. 5 the
Knight doublet is shown [11] on the left, much weaker and not interfering with the

coherence transfer doublet. Figure 5 is the first demonstration of the two effects
together.



The recurring theme of e-e correlation makes it interesting to ask about every
strong-field multi-electron process "how correlated is it?" Moreover, this raises
the question whether a "degree of correlation" can be determined. If a degree
of correlation could be formulated, this degree could be calculated in principle
for any wave function, and it could even be monitored as a function of time
during an interaction. A time-dependent degree of correlation might even lead in
some interaction processes to the recognition that correlation is subject to external
control.

Α specific definition of a degree of correlation which has simple and attrac-
tive properties has recently been proposed [12], and we will describe it here. The
socalled "canonical representation" [13] of a two-electron atomic state Ψ (x, y) is
characterized by a (unique) single-sum basis expansion

where bα(x, y) is given for electrons by a Slater determinant. We can first identify a
degree of correlation K roughly with the number of different functions b necessary
to constuct the exact two-particle wave function in its canonical representation.
Of course, the number of nonzero bσ 's could easily be infinite, so to make a precise
definition of K from this rough idea, we have proceeded as follows. The normal-
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ization forΨ(x,y)leads to the condition for the coefficients Σα|Dα|2= 1, which
shows that each squared coefficient can be interpreted as a weight (probability).
The average of the probability |Dα | 2 is then given by Σα |Dα | 2 x |Dα|2 and the
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inverse of this is the "number" of effectively non-zero probabilities, so K is then
defined as

Although K has attractive properties, there is still a question how to compute
it, even if we know the exact two-electron wave function Ψ (x, y), because Ψ will
only rarely be expressed in Everett's canonical form. The key role in overcoming
this practical problem is played by the single particle density operator p(x, x')
which is obtained from the total density matrix Ψ  Ψ by integrating out all
particle coordinates and spins with the exception of those for one particle

The desired coefficients |Dα | 2 are precisely the eigenvalues of p(x, x') , so the practi-
cal problem reduces to the diagonalization of p(x , x'), which is numerically straight-
forward.

We have done this, and calculated K as a function of time, for our
two-electron model atom in a number of different situations, as is shown in Fig. 6. In

each case the atom starts in its ground state. In case (a) a weak field induces

photodetachment of the outer electron, with little or no involvement of the core
electron. In cases (b) and (c) successively stronger fields are applied. Case (b)
corresponds exactly to the situation already shown in Figs. 4 and 5, where a
core resonance induces the Rabi oscillations while the outer electron is detached,
and the Rabi oscillations can be seen now in the K time dependence. Case (c)
was calculated from a rapidly detaching outer electron, with strong involvement
of the core electron as well. It is clear that the strength of the laser field has a
pronounced influence on the degree of correlation, with stronger fields driving it
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to higher values. This is natural, and consistent with the picture that the number
of final states available to a laser-excited pair of electrons can be large, so that a
large number of orbitals may be required to describe the two-electron behavior.

It is interesting to see here that K does not grow very rapidly, at least not
much more rapidly than the corresponding detachment probabilities in the cases
shown. Our data so far leave open the interesting question what interaction pro-
cesses can cause K to shrink instead of grow, although the stair-step character of
curve (b) indicates that the natural growth of K during detachment and ionization
can be dynamically suppressed.
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