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ΟΝ THE WAVE FUNCTION OF THE PHOTON
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Al. Lotników 32/46, 02-668 Warszawa, Poland

It is shown that tle wave function of the ploton is a very useful con-
cept with interesting ramifications. It plays a major role in bridging the gap
between classicał theory of electromagnetism and quantum electrodynamics.
The photon wave function can also be used to construct a phase-space dis-
tribution for the photon (Wigner function) that describes the transport of
radiation.
PACS numbers: 42.50.-p

1. Introduction

It is believed that certain matrix elements of the electromagnetic field oper-
ators in quantum electrodynamics, in close analogy with nonrelativistic quantum
theory of massive particles, may be treated as photon wave functions. In this paper,
I would like to push this interpretation even further by arguing that one can set up
a consistent wave mechanics of photons that could be often used as a convenient
tool in the description of electromagnetic flelds, independently of the formalism of
second quantization. In other words, in constucting quantum theories of photons
we may proceed, as in quantum theory of massive particles, through two stages.
At the first stage we introduce wave functions and a wave equation obeyed by
these wave functions. At the second stage we upgrade the wave functions to the
level of field operation in order to deal more effectively with the states involving
many particles and to allow for processes in which the number of particles is not
conserved. An important additional consequence of having a genuine wave func-
tion for the photon is a possibility to define an analog of the Wigner function for
the photon with its semiclassical interpretation as a (quasi) distribution function
in the phase space.

The very concept of the photon wave function is not new, but strangely
enough it has never been systematically explored. Some textbooks on quantum
mechanics start the introduction to quantum theory with a discussion of photon
polarization measurements (cf., for example [1-4]). Dirac, in particular, writes a
lot about the role of the wave function in the description of quantum interference
phemomena for photons (in this context he uses the famous phrase now: "Each

(97)



98 	 I. Białynicki-Birula

photon interferes only with itself"), but in his exposition the photon wave function
never takes on a specific mathematical form.

It is tue that in the description of polarization simple prototype twocom-
ponent wave functions are often used to describe various polarization states of
the photon and with their help the preparation and the measurement of polar-
ization is thoroughly explained. However, after such a heuristic introduction to
quantum theory, the authors go on to the study of massive particles and if they
ever return to a quantum theory of photons it is always within the formalism of
second quantization with creation and annihilation operators. In some textbooks
(cf., for example [5-7]) one may even find statements that completely negate the
possibility of introducing a wave function for the photon.

I shall introduce a wave function for the photon by reviving and extending
the mode of description of the electromagnetic field based on the complex form
of the Maxwell equations. This form was known already at the beginning of the
century [8, 9] and was later rediscovered by Majorana [10] who explored the anal-
ogy between the Dirac equation and the Maxwell equations. The complex vector
that appears in this description will be shown to have the properties that one
would associate with a one-photon wave function, including also an acceptable
probabilistic interpretation. Photons are much different from massive particles.
They are also different from neutrinos since the photon number does not obey a
conservation law. These differences are a source of complications, especially when
photons propagate in a medium. However, even these complications have a certain
value: they teach us something new about the nature of photons.

The approach adopted in this paper is distinctly different from the line of
investigation started by Landau and Peierls [11] and continued more recently by
Cook [13]. The Landau-Peierls and Cook wave functions are nonlocal objects.
The nonlocality is introduced by operating on the electromagnetic fields with the
integral operator (-Δ) -1 /4 ,

This integral operator changes the dimension from L -2 to L -3/ 2 , so that the mod-
ulus squared of the Landau-Peierls wave function may be interpreted as a proba-
bility density to fmd a photon. However, as has been already noted by Pauli [12],
these nonlocal wave functions have serious drawbacks. First, they do not transform
under Lorentz transformations as tensors or any other well-defined local geomet-
ric objects. Second, a nonlocal wave function taken at a point in one coordinate
system depends on the values of this wave function everywhere in another coor-
dinate system. Third, the probability density defined with the use of a nonlocal
wave function does not correspond to the probability of interaction of the electro-
magnetic field with localized charges. Vanishing of the wave function at a definite
point has in Pauli's words [12] "no direct physical significance" because the elec-
tromagnetic field does act on charges at the points where the probability to find
a photon vanishes.
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2. An analogy between the MaxweH equations and the Dirac equation

I shall introduce the photon wave function and its evolution equation with
the help of a heuristic argument used by Dirac [1, 14] in his derivation of the
relativistic theory of the electron. There are only two slight modifications that
need to be made in Dirac's original argument. First, my point, of departure will be
the d'Alembert wave equation

instead of the Klein-Gordon equation that describes the propagation of massive
particles. Second, I shall not stop after finding the simplest relativistic wave equa-
tion, namely the one describing a massless spin- 1/2 particle, but I shall continue a
step further to obtain a relativistic equation for a massless spin-1 particle.

In order to implement this plan we need a set of three matrices, say ma x , α,
and α3 which satisfy the Dirac anticommutation relations

where I is the unit matrix. For each set of such matrices we can take a square root
of the Laplacian using the following formula that is a direct consequence of the
relations (3)

The simplest choice, 0: 	 irse, is to take as the matrices 'η the set of well-known
2 x 2 Pauli matrices. Under this choice we obtain the Weyl wave equation [15] for
spin- 1/2 particles describing the propagation of neutrinos

In order to obtain the wave equation for photons one might try to replace the Pauli
matrices by the 3 x 3 Hermítian matrices. Si representing infinitesimal rotations for
spin-1 particles. These matrices, however, satisfy somewhat different anticommu-
tation relations as compared to (3), with extra terms on the right hand side. One
may write down these relations explicitly choosing a specific representation of spin
matrices S. For our purpose it is convenient to use the representation in which the
three components of spin-i wave function transform under rotations as Cartesian
components of a vector. In this representation the matrix elements of spin matrices
can be expressed in terms of the antisymmetric Levi-Civita symbol εijk,

Matrix elements of the anticommutation relations for Si are

At first it might seem that extra terms on the right hand side of this equation
completely ule out the choice of spin matrices Si as candidates for the task of
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taking the square root of the Laplacian. However, we should remember that pho-
tons, being massless, are quite different from massive particles with  spin-i. They
have only two linearly independent states of polarization (for example, they are
left-handed or right-handed) instead of three. That means that photon wave func-
tions must obey one auxiliary condition which eliminates the unwanted state of
polarization. This special property will enable us after all to use spin-1 matrices to
take the square root of the Laplacian. To see how this comes about let us multiply
both sides of Eq. (8) by two nabla operation V and V and perform a summation
over the indices i and í

This relation is nothing else but a matrix version of a well-known identity from
vector analysis

Thus, for all vectors F whose divergence vanishes,

we can imitate Dirac and take square root of the Laplacian in the form

This leads to a Dirac-like equation for the photon wave function F that looks
like the Weyl equation (5) for neutrinos except that the Pauli matrices that are
appropriate for spin-1/2 are replaced by spin-1 matrices,

Thus, the Hamiltonian operator for the photon emerges in this approach as the
scalar product of the momentum vector and the spin vector multiplied by speed
of light. The auxiliary condition (11) can also be expressed in terms of spin and
momentum operators in the form

For definiteness, I have chosen the sign in Eq. (13) to correspond to positive
helicity — as in the equation for the antineutrino. Since the matrices Si are purely
imaginary, reversal of the sign is equivalent to complex conjugation of the wave
function. I shall discuss this problem in detail in the next section.

In order to find the relation between the photon wave equation and the
Maxwell equations I shall first get rid of the Planck constant by dividing both
sides of Eq. (13) by h. Next, I shall rewrite this equation in vector notation using
the identity

to exhibit a familiar pattern involving the curl operation

After separating the real and the imaginary part,
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the above equations become the Maxwell equations, provided we identify the real
and the imaginary part of F with the vectors of electric displacement D and
magnetic induction B,

The square roots of є and μare needed to match the dimensions of the two terms
and an additional factor of v/ is introduced to make the modulus of F equal
simply to the energy density (cf. formulas (28)-(31)). My sign convention for F
is motivated by the existing connection with the spinor calculus (cf. Sec. 11).
The choice of the opposite sign, as adopted, for example, by Majorana results in
an interchange of F with its complex conjugate leading to a reversal of helicity.
However, as I show in the next section, if the polarization states of the photon
are to be properly accounted for, both these choices must be included on equal
footing.

I believe that the main lesson that we can learn from this derivation is that,
despite of their purely classical origin, Maxwell equations bear a very strong resem-
blance to quantum wave equations that describe time evolution of a wave function
in relativistic theory. The same line of argument that led Dirac to the discovery
of his relativistic equation for the electron can be used to derive Maxwell equa-
tions. The analogy with the Weyl equation for the neutrino is particularly striking;
both equations share the same property of not containing Planck's constant. This
analogy can be used to introduce the complete photon wave function.

3. The wave function of the photon

Stationary solutions of the photon wave equation (13) with positive fre-
quency satisfy the following eigenvalue condition:

This equation says that the projection of the spin on the direction of momentum
(helicity) is positive. Thus, the choice of sign in the wave equation is equivalent
to choosing one helicity (right-handed or left-handed) over the other. For neutri-
nos such a choice is based on the experimental observation that all neutrinos are
left-handed, while all antineutrinos are right-handed. The two choices are kept sep-
arate by the law of lepton conservation that forbids the superposition of neutrino
and antineutrino wave functions. For photons such a distinction does not exist.
Photons do not have antiparticles, there is no photon conservation law. As a conse-
quence, the wave functions of left-handed and right-handed photons can be freely
superposed. Moreover, the electromagnetic interactions are invariant under the
parity transformation that interchanges the states with opposite helicities. There-
fore, a change of polarization should be associated with the parity transformation
and not with a particle-antiparticle transition. These facts require an important
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modification of the proposed approach. Of course, if we are only interested in
translating the Maxwell equations into a complex form, we can choose either F
or F* as a primary object. In both cases we obtain a one-toone correspondence
between the real field vection D and B and their complex combination. However,
in order to treat such an object as a bona fide photon wave function we must be
able to superpose different polarization states without changing the sign of the
energy (frequency). This can only be done when both polarizations are described
by ' different components of the same wave function. Since photons may have both
signs of helicity, corresponding to left-handed and right-handed polarizations, we
need wave functions for the photons of both helicities. In order to account for all
photon states, two independent parts of the wave function, say F+ and F-, have
to be introduced. For the same reason we introduce twocomponent wave functions
to describe two polarization states of spin-1/2 massive particles. The two parts of
the photon wave function in empty space (I shall show in Sec. 12 that the presence
of a medium changes the situation) satisfy two separate evolution equations with
opposite signs of the Hamiltonian

By introducing a six-component wave function F made of F± as its upper and
lower components,

the two evolution equations can be cast into a compact form

where p is a member of a set of Pauli-like matrices pi. The matrix p3 produces
plus/minus sign when acting on upper/lower components while p1 interchanges
these components.

With the understanding that the upper and the lower components of .F form
vectors, one may also use the vector notation for the evolution equation (22) and
the subsidiary condition

The doubling of the components of the wave function requires an auxiliary condi-
tion that would restore the original number of degrees of freedom. This is achieved
by demanding that complex conjugation of the wave function has the same effect
as an interchange of upper and lower components,

This condition may also be interpreted as a mathematical form of the statement
that photons do not have antiparticles so that the negative frequency part of
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the wave function does not carry any additional information. Therefore, as an
independent quantity we may consider only the positive energy part F(+) of the
wave field .F (called an analytic signal in classical theory). This part represents
the tue photon wave function and that is the part to be identified with the matrix
elements of the field operation between the vacuum and one-photon states that
appear in quantum electrodynamics. In what follows I shall often use the symbol
to denote the positive energy part of the photon wave field. Owing to the condition
(25), the negative frequency part is obtained just by complex conjugation and by an
interchange of the upper and lower components of the positive frequency part. In
the language of particle physics, complex conjugation combined with multiplication
by p1 would be called charge conjugation and Eq. (25) is the condition of invariance
under charge conjugation.

The analogy with the relativistic electron theory that I have been pursuing
in the previous section becomes the closest when the photon wave equation is
written in the form (22) for then it directly compares with the Dirac equation
written in the chiral representation of the Dirac matrices. In this representation
the bispinor is made of two relativistic spinors (cf. for example [16, 17])

and the Dirac equation for the bispinor ψ has the form

An auxiliary condition of the type (25) is not imposed on the electron wave func-
tion, because the electrons do have distinct antiparticles. Such a condition would be
required for neutral fermions that do not have distinct antiparticles (the socalled
massive Majorana neutrinos). For the electrons, even in free space, the mass term
induces mixing of two states of polarization while for the photons, as I shall show
in Sec. 12, mixing is induced only by an external influence, by the medium.

4. Conservation laws

The fundamental quantities characterizing the photon: the energy density
7ί, the momentum density 1, the energy flux S and the Maxwell stress tensor  Tij
can be expressed as the following combinations of the components of the photon
wave function

All these expressions are bilinear in the wave function F, exactly as in wave
mechanics of massive particles. The evolution equation for F leads to the fol-
lowing continuity equations involving the field quantities (28)-(31) that are just
well-known local versions of energy and momentum conservation
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It follows from the continuity equations (32) and (33) that the following integrals
representing the total energy E, momentnm P, and angular momentum M of the
field are time independent:

The global conservation laws hold provided the wave function is localized in space
so that the integration by parts does not introduce any boundary terms.

In addition to these well-known conserved quantities there is an additional
conserved quantity that can also be expressed as a bilinear form built from the
photon wave function. In contradistinction to expressions (34)—(36), this one is
not obtained by integrating a local density, but has a form of a double integral,

This constant of motion can be shown to represent the difference between the
average number of right-handed and left-handed photons. I shall say more about
conserved quantities in Sec. 10.

5. Probabilistic interpretation of the wave function

Probabilistic interpretation of the photon wave function is possible without
destroying locality if one takes the energy density as a relative measure of the
probability density to find the photon. Since photons are not charged, this seems
to be a sensible choice. After all, one detects photons by absorbing their energy:
the photon is where its energy is localized. The normalized value p(r, t) of the
probability density is

and energy conservation automatically gives the conservation of total probability.
The probability current is given by the Poyntisng vector (normalized again by the
total energy)

satisfying together with the probability density the continuity equation

The nonlocal photon wave functions proposed by Landau-Peierls and by Cook do
not give a local conservation of probability.
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For stationary states of the photon the proper normalization condition for
the photon wave function will be

expressing the fact that the wave function describes only a single photon. This
condition must be handled with some care, since stationary states in infinite space
are described by non-normalizable wave functions. Therefore, Eq. (42) strictly
speaking can hold only in a finite volume. In the formulas representing expectation
values (cf. for example Eqs. (48) and (49)), we may, however, in most cases take
the limit of infinite volume.

6. Eigenvalue problems for the photon wave function

Wave mechanics of photons is amenable to the same analysis as is custom-
arily applied in wave mechanics of massive particles. In particular, we may study
eigenvalues and eigenfunctions of various interesting observables. The most impor-
tant examples of such observables are momentum, angular momentum and energy.

In the discussion of the Hamiltonian, we have already encountered the quan-
tum mechanical momentum operator (h/i) V. The eigenvalue problem for the pho-
ton momentum operator has the standard form

where ki are components of the wave vector.
The eigenvalue problem for the photon angular momentum also has the same

form as in quantum mechanics of massive particles. The total angular momentum
operator consists of two parts: the orbital angular momentum and the spin angular
momentum. It is worth noting that it is the total angular momentum .1 defined as
the sum of the orbital and the spin part,

that commutes with the Hamiltonian and, therefore, is a constant of motion.
The eigenvalue problem for angular momentum contains, as usual, the eigenvalue
problem for the z-component of the total angular momentum

and the eígenvalue problem for the square of the total angular momentum

The solutions of Eqs. (45) and (46) are well-known vector spherical harmonics (cf.
for example [18]).

An interesting problem is that of a relationship between the wave mechanical
expectation values (P) and (M) of the momentum and angular momentum opera-
tor and the total momentum and angular momentum of the electromagnetic field
defined as the integrals (35) and (36). At first the corresponding expressions look
completely different, but for stationary photon states they turn out to produce
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identical results. In order to see this one may use the following relation obtained
frOm Eqs. (16) and (19) that are valid for wave functions of stationary states

Upon substituting the right-hand side of this equality into the formula (35) for the
field momentum, after an integration by parts and with the use of the transversality
condition (11), I transform (35) into the quantum mechanical expression for an
average value

where in the last term I have used the normalization condition (42) for station-
ary states. In a similar manner, the classical formula (36) is transformed into an
expression for the average value of the angular momentum

These results show that in order to convert for stationary states the standard
classical expressions for the total momentum and angular momentum of the elec-
tromagnetic field into the expressions used in wave mechanics we only need to use
the appropriate normalization of the wave field. For nonstationary states the two
methods for calculating momentum and angular momentum cannot be compared
because we lack the normalization prescription for the classical fields: we cannot
tell how many photons are in a state. It is worth noting that the final formulas
(48) and (49) have exactly the same form as in Schrödinger's wave mechanics; the
matrix p3 has disappeared.

The eigenvalue problem for the photon energy operator can be set up along
similar lines. We can search for stationary solutions of photon wave equations
closely following the path travelled in nonrelativistic wave mechanics of massive
particles. This procedure usually involves selecting a set of operation commuting
with the Hamiltonian and then solving the appropriate set of eigenvalue equations.
I shall illustrate this approach in the next section with an example of photon
propagation along an infinite cylindrical optical fiber.

7. Photon propagation along an optical fiber
as a quantum mechanical bound state problem

Let us consider any inflnite optical fiber of diameter α characterized by a
dielectric permittivity ε. Owing to the symmetry of the problem one might in-
clude in the set of commuting operators, in addition to the Hamiltonian, also the
projections of the momentum operator and the total angular momentum on the
direction of fiber axis. In cylindrical coordinates the eigenvalue equations for the
z-component of momentum and angular momentum have the form



On the Wave Function of the Phoon	 107

Assuming that the photon wave function belongs to the eigenvalues ħkz and ħM
of these operators we can separate out the dependence on z and φ

In order to write down the eigenvalue equation for the Hamiltonian (in a homo-
geneous medium) in terms of the components of f one needs only the formula for
the curl in cylindrical coordinates (cf. for example [19]). The result can be written
in the form

Every solution of these equations automatically satisfies the divergence condi-
tion (11). Equations (52) lead to a Bessel equation for fz

where ki = ω2/c2 - k2z. Photon wave functions obey Eq. (53) inside the fiber
with one value of k1 and in the surrounding free space with different values of
k1 . Depending on whether k1 is real or imaginary a general solution of this equa-
tion is a linear combinations of Bessel functions of the first kind JM(p) and the
second kind YM(p) or a linear combinations of modified Bessel functions IM(p)
and ΚM(p). In full analogy with the problem of a potential well in quantum me-
chanics, we can search for bound states in the transverse direction by matching
a regular oscillatory solution inside (that means the JM (p) function) with an ex-
ponentially damped solntion outside the fiber (that means the ΚM(p) function).
The matching conditions, well known from classical electromagnetic theory, are
the continuity conditions for the Εz and Ηz field components at the surface of the
fiber, when p = α. Bound states are possible because the speed of light is greater
in the vacuum than inside the fiber and therefore it may happen that k1 is real
inside and imaginary outside the fiber. Since there are two matching conditions
and only one ratio of the amplitudes inside and outside the fiber, both conditions
can be satisfied only for a set of discrete eigenvalues of the photon energy ħk". It is
worth noting that in order to have an imaginary k1 we must have a nonvanishing
kz . Thus, a photon may well be bound in the plane perpendicular to the fiber, but
it is always moving freely along the fiber in fnll analogy with a charged particle
moving in a homogeneous magnetic field.

8. Photon wave function in non-Cartesian coordinate systems
and in curved space

It has been observed some time ago [20, 21] that the equations determining
the propagation of the electromagnetic field in arbitrary coordinate systems in-
cluding also the case of curved spacetime may be written in the form of Maxwell
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equations, with all the information about the spacetime geometry contained in the
constitutive relations connecting the E,B and D,H fields. The description of the
electromagnetic field in terms of the wave function adds to this old observation
one interesting new element. In contradistinction to the case of an inhomogeneous
medium (cf. Sec. 12), in the gravitational field the two photon helicities do not
mix. This follows from the fact that the constitutive relations induced by an arbi-
trary metric tensor gμ v can be written as a single equation connecting two complex
vectors: the vector F defined by the formula (18) and a new vector G defined as

The constitutive relations for two complex vection F and G have in curved space-
time the following form:

The complex form of the Maxwell equations expressed in terms of vectors G and
F is in curved spacetime the same as in flat space

Ιn these equations the differentiations with respect to time and the nabla oper-
ation involve only ordinary (not covariant) derivatives as in flat space. The only
difference is, of course, in the form of the constituent relations (56) which contain
all the information about the gravitational field. Since the relation between G and
F is linear, we may write again two separate wave equations for the two helicity
states as before. Combining these two equations, we obtain the following wave
equation and the subsidiary condition for the full photon wave function F

These equations contain only the matrix p3 that does not mix the helicity states.

9. Phase-space distribution function for the photon
and its evolution equations

Having introduced the photon wave function, I can follow the procedure
known from nonrelativistic wave mechanics and define a distribution function in
the phase-space: an analog of the Wigner function [22] in wave mechanics. This
is achieved by introducing an appropriate Fourier transform of the product of



On the Wave Function of the Phoon 109

the wave function and its complex conjugate. Fourier transforms of the electro-
magnetic fields similar to the Wigner function in quantum mechanics have been
introduced before in optics, first by Walther [23] in the twodimensional context
of radiative transfer theory and then by Wolf [24] and by Sudarshan [25-27] in
the three-dimensional case. In all these works phase-space distribution functions
were defined for stationary states of the electromagnetic field only and they were
treated as functions of frequency. By contrast, in my more general approach the
distribution functions will be generically time dependent since they will be con-
stucted from arbitrary wave functions. This will allow me to give a meaning to
the notion of an instantaneous state of the electromagnetic field and to study its
time evolution.

The only formal difference between the standard definition [22] of the Wigner
function in quantum mechanics and the present case is the presence of vector
indices. Thus, the photon distribution function (PDF) in phase space will not be
a single scalar function but rather a 6 x 6 matrix defined as follows:

Similar multi-component distribution functions arise also for a Dirac particle and
I shall borrow from a recent publication [28] some of the techniques to deal with
such functions.

It follows directly from the definition (62) that the components of Wαb form
a hermitian matrix. Every such 6 x 6 matrix can be written in the following block
form:

where all 3 x 3 matrices W, are Hermitian. This decomposition can also be ex-
pressed in terms of the p matrices

The vector indices i and j refer to components within the upper and lower parts
of the wave function and the matrices p act on these parts as a whole. The most
general PDF, as seen from this analysis, is quite complicated. In general, when the
medium induces transitions between the two polarization states, all components of
this function are needed. However, when the photons propagate in free space only a
small subset of these components is sufficient to account for all important dynamic
properties of photon beams. As I show below the full phase-space dynamics can
be described in a self-contained manner by just one scalar function and one vector
function. To this end let me introduce the following reduced PDF:

where FE are the components of the original complex vector (18). This vector
contains full information about the classical electromagnetic field and the PDF
(65) will suffice to account for the dynamics. The matrix W can be decomposed
into a real symmetric tensor and a real vector according to the formula
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The tensor corresponds to the symmetric part and the vector to the antisymmetric
part of Wic I have separated out a factor of c in the second term since the vector
u will be shown to be related to the momentum density, while the trace of is
related to the energy density.

The equations satisfied by the components of the PDF in free space can be
obtained from Maxwell equations (16) and (11) for the vector F,

This leads to the following set of coupled evolution equations for the real compo-
nents wij and ui

and to the subsidiary conditions

The k-dependent terms in the evolution equations describe a uniform rotation of
the vector and of the tensor around the wave vector k so that these terms can be
eliminated by "going to a rotating coordinate system".

With the help of the subsidiary conditions (70) we can eliminate the re-
maining components and obtain from the evolution equations (69) equations for
w = Σ wii and u

These evolution equations do form a simple, self-contained set. However, as it is
always the case with the phase-space distribution functions in wave mechanics, not
all solutions of these equations are admissible. Only those distribution functions
are allowed that can be represented in the form (65) at the initial time (with the
vector F satisfying the subsidiary condition (70a)).

10. Invariance group and its generators

The Maxwell equations in free space are invariant under the full 15-parameter
group of conformal transformations that includes the Poincaré group as its
10-parameter subgroup. This invariance is shared by the Eqs. (69) and (70) for the
PDF which were obtained from the Maxwell equations and it leads, by Noether's
theorem, to the existence of 15 conserved quantities — the generators of the invari-
ance group (see, for example, [16]). All these constants of motion can be expressed
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in the uniform manner as phase-space integrals involving only the four components
w(r, k, t) and u(r, k, t) of the PDF Wij

where dΓ = d3rd3k/(2π)3 . The constants of motion E, P, M, and N have a clear
physical interpretation of the energy, momentum, angular momentum, and the
moment of energy (the center of mass vector multiplied by the total energy E).
However, there is no direct interpretation of D, K0, and K except as cértain mo-
ments of the momentum distribution and the energy distribution, or as generators
of the conformal transformations. In order to prove the time independence of all
quantities (72) we can use the evolution equations and the subsidiary conditions
satisfied by the components of the distribution function.

11. Photon wave function and the spinor calculus

For those who are accustomed to using the spinorial description of relativistic
particles, the photon wave function is a familiar object. It is the self-dual (or anti
self-dual) part of the electromagnetic field tensor (cf. Ref. [29]). To be more precise,
the components of the vector F are related to the components of a second rank
symmetric spinor ΑΒ

and the components of the complex conjugate vector F are related to the com-
ponents of a second rank symmetric primed spinor Α'Β' ,
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In. the spisnorial formalism, our observation that in curved space both he-
licities propagate without mixing is a simple consequence of the fact that both
spinors ΛB and 

Α'Β'
 satisfy separate equations of the form [29]

where the soldering form σμΡΑ'Β is related to to the metric tensor through the
formulas 	.

The covariant spinorial derivative μ acts on spinors with the help of the spinorial
affine connections ΓμΑ  Β and ΓμA' B' (cf., for example, [31])

that can be expressed in terms of the soldering form

where the generation of Lorentz transformations S'" Β are defined as

The existence of a direct relationship between the three components of the
wave function F and the three independent components of the symmetric spinor
φΑΒ signffies that the photon wave function in free space (also in a curved space),
unlike the wave function of Landau and Peierls, is a truly relativistic geometric
object. The components of F at a point x in one coordinate system are linear
combinations of the components in another coordinate system taken at the cor-
responding point 'x for under a Lorentz transformation the second rank spinor
changes according to the formula

where SAC is a 2 x 2 matrix of the fnndamental (spinor) representation of the
Lorentz group.

Thus, from the point of view of the representation theory of the Lorentz
and Poincaré groups [30], our mathematical scheme looks painfully simple: the
photon wave functions for a given helicity is just a three-component field that
transforms under irreducible representations (1, 0) or (0, 1) of the proper Lorentz
group (without reflections). In order to accommodate reflections we must combine
both representations and introduce the object Φ,
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that is a counterpart of the Dirac bispinor (26). This is exactly our complete photon
wave function .f describing both polarizations (up to a transformation from the
vectorial to the spinorial components given by Eqs. (73) and (74)). I have used
the same symbol to denote upper and lower components since, unlike the case of
the Dirac bispinor (26), they are connected by the complex conjugation (25).

The Maxwell equations expressed in spinor notation and the Weyl equation
provide just the simplest examples taken out of a hierarchy of wave equations for
massless fields described by symmetric spinors B1B2...Bn or Β'1Β'2...B'n All these
equations have the form [29]

12. Wave mechanics of photons in an inhomogeneous medium

Having made the identification of the real and the imaginary parts of the
photon wave function with the electromagnetic fleld vectors we may turn the
argument around and use the Maxwell equations to obtain the wave equation for
the photon wave function in a general linear medium.

For the electromagnetic fleld in a medium characterized by constant values
of ε and μ, the Maxwell equations give rise to the same simple evolution equation
for the vector F as in free space, except that є0 and μ10 in (18) are replaced by
their values in a medium. I have taken advantage of this fact in the description of
the photon propagation in a fiber. However, when the values of ε and μ are space-
and/or time-dependent the vector F ceases to satisfy an equation by itself but the
evolution equations involve also its complex conjugate. This, at first sight, gives
nonlinear wave equations and threatens to uin our whole scheme, but the dou-
bling of components of the photon wave function introduced in Sec. 3 solves the
problem. The "big" wave function F introduced to account for the two states of
polarization satisfies a linear wave equation in an arbitrary linear medium. In free
space, in a homogeneous medium, or in gravitational field the two states of polar-
ization propagate independently resulting in two independent wave equations. In
an inhomogeneous medium, however, the two helicities mix and the correspond-
ing wave equations become coupled. I shall write down the wave equation in an
inhomogeneous medium in the form (upper and lower parts of F are treated as
three-dimensional vection to make use of the nabla operation)

where the speed of light c is constucted from the local values of permittivity and
permeability,

and the matrix L has the form,



114 I. Białynicki-Birula

One can check that the operator on the right-hand side of Eq. (83) is Hermitian so
that it can be viewed as a quantum mechanical Hamiltonian in the presence of an
inhomogeneous medium. The transversality condition (11) in an inhomogeneous
medium is also modified and it takes on the form,

Note that the speed of light 1/ '/i71 may vary (as it does in the gravitational field)
without causing the mixing of polarizations. It is only the varying "conductance
of the medium" √є∕µ (the sole justification for the use of this name is the right
dimensionality of 1/Ohm) that mixes the two states of polarization.

The wave equation (83) and the transversality condition (86) are invariant,
as was the case in empty space, under the charge symmetry operation

Therefore, we can impose now the same restriction (25) as in empty space on
the photon wave function that will guarantee that also photons propagating in a
medium will not have distinct antiparticles.

The photon wave equations in an inhomogeneous medinm do not look very
appealing but that is due to a phenomenological character of macroscopic electro-
dynamics. The propagation of a photon in a medium is a succession of absorptions
and subsequent emissions of the photon by the charges that form the medium.
The number of photons of a given felicity is, in general, not conserved in these
processes and that accounts for all the complications. The photon wave equations
in an inhomogeneous medium is describing in actual fact a propagation of some
collective excitations of the whole system and not just of pure photons.

13. Conclusions

I do not want to claim that the notion of the photon wave function auto-
matically leads to some new physics. It might, however, play a useful pedagogical
role, providing a "missing link" between classical Maxwell theory and quantum
electrodynamics. With the help of this concept one may unify the treatment of
massive and massless particles in quantum theory. In particular, some solutions of
the Maxwell equations receive a fresh interpretation as stationary photon states
closely resembling analogous states of massive particles. One may also be able
to give a direct physical meaning to some essentially complex solutions of the
Maxwell equations. Such solutions arise, for example, when one imposes boundary
conditions describing absorption of photons at the boundary.

As has been pointed out by Eberly [32], there should also exist a connection
between the photon wave mechanics and semiclassical radiation theory. Namely,
by introducing material interactions microscopically, via the complex polarization
vector P + iM given in terms of the Schrödinger wave function, instead of macro-
scopiscally via ε and μ, one may obtain the coupled Maxwell-Schrödinger wave
equations. The difference with more conventional semiclassical or neoclassical ra-
diation theory would arise from the probabilistic character of the radiation field.

There is finally the global aspect of quantum theory that is handled much
more easily at the level of wave mechanics than at the level of local field operators.



On the Wave Function of the Phoon 115

The requirement that all wave functions must be regular and single valued plays an
important role in quantum theory of particles with mass. I believe that the notion
of photon wave function might be of importance whenever the global properties
of photon wave mechanics are relevant. Such problems arise, for example, when
the propagation of probability waves takes place in multiply connected regions. In
particular, one may look for an analog of the Aharonov —Bohm effect for photons.
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