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PHASE SPACE AS ARENA FOR ATOMIC MOTION
IN A QUANTIZED LIGHT FIELD
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We describe the motion of an atom in a quantized light field using the
concept of the Wigner distribution in phase space. This approach provides
a pictorial explanation of the deflection and focusing of the atomic beam.

PACS numbers: 42.50.Vk, 42.50.Wm

1. Introduction

In classical mechanics a phase space distribution contains the complete in-
formation about a dynamical system. This concept carries over to the quantum
world: a prominent distribution is the Wigner function [1]. This representation
of quantum mechanics gives immediate insight into the dynamics of a quantum
system. In the present paper we analysc the mechanical action of a quantized light
field [2] on a non-resonant atom using this concept [3).

The paper is organized as follows. In Sec. 2 we present the model [4] describ-
ing the motion of a non-resonant atom in a single mode of a quantized light ficld.
Starting from the Schrédinger equation for the state vector for the atomic motion
and the field we derive the equation of motion for the Wigner function of the atom.
The latter turns out to be the sum of the Wigner functions corresponding to the
motion of the atom in the individual number states, weighted with the photon
statistics. In Sec. 3 we give an analytical solution for the equation of motion of the
Wigner function for the case when the wavelength of the light is much larger than
the de Broglie wavelength of the atom [5]. Making use of this small parameter we
expand the actual light potential in a Taylor series up to second order and obtain
a first order diflerential equation solvable exactly. We devote Sec. 4 to a discussion
of the distribution of atoms alter the interaction with the light field. Following the
evolution of the Wigner function we note that each individual Fock state deflects

*Also at Moscow Institule of Physics and Technology, Dolgoprudny, Moscovskaja Obl., Rus-
sian Federation.
t Also at Max-Planck-Institut fiir Quantcnoptik, 85748 Garching bei Miinchen, Germany.

(81)



82 E. Mayr et al.

the atoms in different directions [6-8] and focuses [9] them at different points. In
Sec. 5 we derive simple expressions for the position and the size of the foci of the
individual Fock states as it follows from the phase space dynamics. We conclude
by summarizing our main results in Sec. 6.

2. Formulation of the problem

We describe the interaction of a non-resonant atom and a quantized electro-
magnetic field mode shown in Fig. 1 by the effective Hamiltonian [4, 10-12]

52
IT = 22 4+ [0z + L) — 0(2)] g(2)'a. (1)
2M
The operators @ and &l are the annihilation and creation operators of the ficld
mode and the coupling constant g(z) = a£Z(z) is the atomic linear susceptibility o
multiplied by the “square of the electric field per photon”. For simplicity we assume
a rectangular field distribution in z-direction of length L as expressed by the
Ileaviside step functions 6(z). Because of the non-resonant interaction we neglect
the internal degrees of freedom of the atom. The z-direction we call longitudinal
and the z-direction transverse. Here we treat the transverse motion of the atom
quantum mechanically and hence keep the operator nature of the kinetic energy
p2/2M. In z-direction we consider the velocities such that the corresponding de
Broglic wavelength Agp = 2wh/Muv, is much smaller than the typical dimension
of the electromagnetic field estimated by the wavelength A. Hence we describe the
motion along the z-axis classically. We therefore associate the z-coordinate with
time via the relation z = v,¢{ — L and consider the spatial evolution of the system
in this direction as a time evolution given by the Schrodinger equation

oWy |
ihp L = 1119). (2)

For a given L the velocity v, defines an interaction time ¢t = L/v,.

Fig. 1. Quantum lens. A beam of non-resonant atoms in z-direction interacts with the
light ficld in the region —L < z < 0. Different Fock states dcflect atoms in differcnt
directions and focus them at different points.
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~ When the atom enters the field at ¢ = 0, the state vector [¥(¢ = 0)) is the
direct product of the transverse wave function Sf(z) of the atom and the ficld state

[#), that is

w=0) =3 wain)e [ des)l), ®)

where w, denote the photon probability amplitude of the field. The Schrédinger
equation (2) with the Hamiltonian (1) couples the degrees of freedom of the field
and the motion. As a result of the interaction the states of the field and the atom
get strongly entangled. This allows us to gain information about one subsystem
via the other. When we substitute the ansatz .

) =Y wn / " Qe W (2, )l2) @ |n) (4)
n=0 —oo

for the state vector |#) into the Schrédinger equation (2) with the ITamiltonian (1)
we find

.. O (2,1) P2

lhT = {2;’[ +[0(t) —0(t - t[,)]_q(a:)n} U, (z,t). (5)

Each equation of this system is the Schrodinger equation for a particle which moves
in the potential

Va(z) = [0(z + L) — 0(2)] g()n (6)

of the individual Fock states. It gives the probability amplitude &, (z, t) of finding
the atom at the time ¢ at the position z, and the ficld in the n-th Fock state.

For the time interval 0 < ¢ < {r, that is when the atom is in the standing
light field it feels the potential

Va(z) = g(z)n, (M
whereas for {7 < ¢, when it is out of the cavity
Vo(z) = 0. (8)

Ilence the time evolution of the state |¥) of the combined system of the quantum
field and the transverse motion is given by the time evolution of the probability
amplitudes ¥, (z,t) subject to the initial condition ¥, (z,t = 0) = f(z).

The state vector |¥) contains the complete information about the field and
the atom and our further treatment depends on the specific question we want to
address. We can for example consider the properties of the quantum field ignor-
ing the transverse motion of the atom or vice versa concentrate on the motion
while ignoring the field variables. Morcover we can, of course, investigate the en-
tanglement between the atomic and field variables via joint measurements [8, 12].
In the present paper, however, we confine oursclves to the measurements of the
atomic motion only. We are interested in the distribution of atoms in phase space
spanned by transverse position £ and momentum p. Therefore as the main tool
we introduce the concept of the Wigner function.
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We start from the density matrix

p= IO = S wwul

n!,n"=0
[e.¢] o0
x/ da:'/ dz" W (2!, O (2", 1) |2") ("] ® |n')(n"| 9)
—00 -0

of the entire system and trace over the field variables to find for the reduced atomic
density matrix

(e} (9] o0 o0
pa = S (nlaln) = 3 Juwal? / d’ / "W, (2!, )T (", O’} ("] (10)
n=0 n=0 —o0 o0 .
We obtain the Wigner function [1]
1 © i -
PM(z,p,t) = 5— / dge™#7 (@ + 1€]parlz — 36) (11)
—-00

for the transverse atomic motion by substituting the atomic density operator
Eq. (10) into Eq. (11) and we arrive at

o0
PO, p,0) = 3 [wn PPz, 1) (12)
n=0
This is the incoherent superposition of the atomic Wigner functions
w .
Pz, p,1) = / dee= P62 (2 — 1€, () (z + 1€, 1) (13)
27h J_o 2 2

each of which corresponds to the motion of the atom in the potential V, given
by the n-th Fock state. The weight of the n-th Wigner function is the photon
statistics |wy,|? of the initial field state.

The equation of motion for P,(lw) following from the equation of motion of
the density operator reads [1]:

8P,(lw)(:c, p,t)
o
__p 0P (z,p,1) N i (if/2)% 8241V, (x) 8241 P{Y) (2, p, 1) (14)
M Ox (2 +1)! da?H OpHT :

We conclude this section by noting that we can find the time dependence of
the transverse atomic motion by solving either the Schrédinger equation (5) for
the probability amplitude ¥, or the equation of motion for the Wigner function
Eq. (14). Since the latter involves the position as well as the momentum it is in
general harder to solve than the Schrédinger equation, although for some special
cases it is much more illustrative.

3. Wigner function of atomic motion

In the present section we consider the deflection and focusing of the atoms for
a simple case which nevertheless displays very interesting physical phenomena. We
take the initial transverse wave packet to be narrow compared to the wavelength
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of the light field and the interaction time ¢z short, so that the wave packet does
not change its position in z-direction considerably. In this case the equation of
motion for the Wigner function can be solved exactly and immediately provides
us via Eq. (12) the position and momentum distribution of the atoms.

Indeed, we take as the initial condition for ¥, a Gaussian wave packet

(e, =0) = () = (VA e -5 (3)7]. (15)

where d denotes the width of the transverse distribution of atoms. In the case
d < A we can expand the mode function g(z), Eq. (1), around the centre z = 0 of
the wave packet, i.e.

— 1 2 19% 1 )] 2
)= + gz -+ =—g2z° -] AR - puce
9(z) =go+ 01 2g z° 4+ g0 — e + 292 4+ ) (16)
where g) = —-‘Ldzl - and g, = -—a"-d - . By combining the linear and the quadratic

=0
contributions of the potcntlal in a binomial we reduce the problem to the motion
in the parabolic potential

Va(z) = Va(2y) + %ng(z — ) (17)

of the displaced harmonic oscillator with minimum V,,(z;) = (g0 — 397/92)n at

€y = —g1/92 and [requency w, = \/nga/M. Note that the constant term V,(z;)
can be omitted from the Schrédinger equation

i (@, _ [ L w2 (z - z,)Q]w,,(z,t) (18)

at oM ' 2
for the probability amplitude ¥,, since it only results in an irrelevant phase factor.
We can use the well-known Green function for the harmonic oscillator to
solve the cquation for the time evolution of ¥,. Ilowever, in the present paper we
pursuc the more llustrative phase space approach using the Wigner function as
discussed in Sec. 2. In the harmonic approximation only the term I = 0 in the
equation of motion (14) for P™) contributes to the sum, since 9"V/dz™ = 0 [or
all n > 2, and we are left with the classical Liouville equation

3Pr(lw)(x,p,t) _ P OP,(.W)(:L',IJ,!)
ot T M O
for the Wigner function.

The approximation by a harmonic oscillator has a big advantage. Since the
frequency wy, of the harmonic oscillator is independent of the oscillator amplitude,
all parts of the dlstributlon move in phase space with the same angular velocity,
and the Wigner function P,. (z p,1) at time ¢ follows by a rotation of the initial
Wigner function P§ )(a: p,t = 0) around the phase space point (zs,0). Indeed,
with the help of the method of characteristics [13] one obtains

PM(z,p,t < tr) = P{Y)((=,p,1), M=, p, 1), = 0) (20)

(W)
+ Mwl(z— z,)@”—a—(;—’p’—t) (19)

with

E(z,p,t)= (x—:c_,)cos(w,,t)— sm(w,.t)-i—:c_;,
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P(z, p,t) = pcos(wnt) + Mw,(z — ;) sin(wnt), - (21)
which satisfies Eq. (19). This Wigner function describes the distribution of atoms
in phase space as long as they interact with the standing light wave, that is for
0 <t <tr. After the interaction, i.e. ¢ > t, we have V;; = 0. The {ree motion of
the atoms corresponds to the time evolution of the Wigner function given by the
equation

8P,£w)(.’l,',p, t) _ __p_anEW)(xipl t) (22)
ot T M oz )
Again we can find the solution
(W) — pW) — .£. — =
Pn (:L',p,t >tL) —Pn (1' ]\/I(t tL)vp)t tL) (23)

with the initial condition P(w)(:c p,t = ) using the method of characteristics.
From Eq. (23) we note that the particles move along trajectorics of constant mo-
mentum, that is parallel to the .’L' -axis. :

As the initial condition P )(.L' p,t = 0) we take the Wigner function

P(W)(x,p,t =0)= 7, &XP [ (%)2 - (%P) 2] (24)

correspond'mg to the initial transverse distribution f(z), Eq. (15). Ilence the phase
space distribution of particles inside the cavity reads

PMW)(z,p,t < tr)

1 1 P . ?
= —=exp [—d_z ((m zy) cos(wnl) — Won sin(wpt) + :cj) ]

2
X exp [— (%) (pcos(wnt) + (z — zp)Mwy sin(w,,t)){' , (25)

where we have substituted the trajectories Z and p, Eq. (21), into the initial dis-
tribution Eq. (24).

Since we only observe the atoms after they have left the light field we now
consider ¢ > ¢r. The distribution Eq. (25) for ¢ = ¢1, scrves as the initial condition
for the Wigner function of frec motion evolving according to Eq. (22). With the
help of Eq. (23) we arrive at

Péw)(l',l’; t Z lL)

1 p . 2
:-ﬁexp {—“5 [(E—M(t—lL)—Z‘f) COS p — Mo, sm<p,,-|-z-f] }

d\? ’
X exp {— (ﬁ) [PCOS $n + (31 - '1%(‘ — i) — ‘L'f) Muwp sin ‘P"] } , (26)
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w.here ¥n = wntr. Moreover, we recall that time corresponds to the z-coordinate
via z = v,t — L and this distribution reads

P{W)(z,p, 2)

1 1 p P . 2
_;ﬁexp T :L'—Mvzz—a:j coscp,,—Mwnsmcpn+x!

d\2T 2
x0xp{— (ﬁ) [pcosgo,,+(:c—jwpv z—:c,)]lflwnsingon] } (27)

In Fig. 2 we show the contour lines of our initial Gaussian Wigner cigar (24)
at the origin of phase space aligned along the z-axis. Duc to the motion of the

) 1
£ [}

Fig. 2. Evolution of the atomic Wigner function in and after the light field for a Fock
state n = 2. In the light field the initial Gaussian cigar, narrow in momentum but broad
in position, rotates following the evolution in the parabolic potential. Outside the light
field the momentum is conserved which results in the shearing of the distribution. The
width of the distribution in position reaches a minimum when the cigar stands vertically
which corresponds to the focus.

atom in the harmonic oscillator potential V; the Gaussian cigar rotates in phase
space around the point (z = x4, p = 0) by the angle ¢, = w,ir, as given by
Eq. (25). The following free evolution given by Eq. (27) is depicted in Fig. 2 for
three -typical times, that is for three typical positions outside of the light field,
namely z = 0, z = z; and z = 2z;. We note that the width of the Wigner function
in z-variable first decreases and then increases. It reaches a minimum when the
cigar crosses the phase space line £ = z;. This is the physical origin of the focusing
of the atoms.

So far we have only considered the motion of the atom in the potential
Va given by the n-th Fock state. In the case of a field state |#) consisting of a
superposition of Fock states the Wigner function P(W)(z, p, 2) of the atomic motion
is the incoherent sum Eq. (12) of the Wigner functions P,gw)(:c, p,t) weighted with
the photon statistics |w,|2. In Fig. 3 we show the Wigner function P(W)(z, p,¢)
at the exit of the cavity, whereas in Fig. 4 we depict its contour lines for various
times ¢, that is for various positions z. The left column displays the evolution
of the initial Gaussian cigar in the standing light field. We note that duc to the
n-dependence of the frequency w, of the oscillator potential, that is the angular
velocity in phase space, the Gaussian cigar splits into many cigars — each of which
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Fig. 3. Wigner function of the atom at the exit of the cavity. The field is in a coherent
state of average number of photons # = 1.

(a) (d)
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Fig. 4. Time evolution of the Wigner function of the atom in the cavity ((a)-(c)) and
outside the light field ((d)-(f)). Here we display the contour lines of the three dominant
peaks corresponding to the vacuum n = 0 and the first two excited Fock states n = 1
and n = 2. The ficld is in a coherent state of average number of photons # = 1. In (a)
we display the initial distribution, and in (b)-(c) we show the rotation and the splitting
during the interaction with the light field. During the free evolution shown in (d)-(f)

the individual cigars go through £ = z; at different times corresponding to different
focal distances.
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is weighted with the photon statistics. Figure 4c depicts the distribution of atoms
at the exit of the cavity and serves as the initial distribution for the free evolution
shown on the right column for various positions 2 outside of the light field. Each
cigar experiences the shearing effect discussed in Fig. 2. Moreover, different cigars
move through the focal line # = z; at different times ¢, which corresponds to
different positions F,,.

4. Distributions of atoms in space and in momentum

So far we have analyzed the distribution of transverse position and momen-
tum in its dependence on the coordinate z. In the present section we consider the
spatial distribution W(z, z) of atoms in the z—z plane. We find it by integrating
PW)(z,p, z) glven by Eq. (12) and Eq. (27) over p and arrive at

W(z,2) = Z |wn |2W, (=, 2) (28)
n=0
where W, (z,2) = [ dpP,gw)(:c, P, ) is the spatial distribution of atoms due to the

interaction with the n-th Fock state. After evaluation of the Gaussian integrals we
find

1
HaaCxe) 2
X exp _—D%z)‘ [a:—zf (l—coscpn+%f-zsingon)] } (29)
with
Dyn(2) = [(—h—)z (ﬁz cos ¢, + sin<,o,.>2
dMw, v,
271/2 .
+d? (cos Pn — %z sin gon) ] ) (30)
4

In Fig. 5 we show the contour lines of the distribution W(z, z) of atoms and
a cut along the focal line z = z; for a coherent state of average number of photons
7 = 1. We note that the initial atomic beam splits up into a number of partial
beams due to the deflection of atoms by the individual Fock states. Moreover, we
find that each partial beam corresponding to the n-th Fock state focuses at the
individual point (z;, .7-',,) The cut through the distribution W(z, 2) along the focal
line = z; depicted in the right part of Fig. 5 shows the weight of each partial
beam reflecting the photon statistics of the initial field state.

We obtain the focal length F,, from Eq. (30) as the position z where Dy (2)
reaches the minimum. For z > 0, that is outside of the light field this corresponds
to ¢os ¢, — (wn /v, )2z sin g, = 0, which yields

2f = Fn = -——qzz—— (31)

wy tan ¢,
When the atom leaves the light field at z = 0, the centre of the wave paciet is
located at

zn, = 251 — cospyp). (32)
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Fig. 5. Contour plot (a) of the probability W(z,2) of finding an atom at the point
with coordinates £ and z. The Gaussian atomic beam centered at £ = 0 leaves the
cavity at z = 0. The field is in a coherent state of average number of photons A = 1.
The undeflected and unfocused partial wave associated with the cavity vacuum state
represents the profile of the incident beam. The deflected partial waves associated with
different photon states of the field focus along the line z = z;. The intensity of atoms
along this line is shown in (b). The parameters used here are: pa = 0.3, h/d* Mws = 20,
Tp=—2.

It passes through the focus £ = z; and z = F, and hence experiences a deflection
by an angle

6, = arctan (u) = arctan (x,ﬂsin <p,,) . (33)

Fn Vz

The focal distance F,, given by Eq. (31) depends on the curvature g of the
potential V,, since wy, = \/nga/M and ¢, = w,L/v, depend on gs. In contrast,
the deflection angle 0, depends on the slope gi as well as on the curvature gs.
However in the limit of ¢, < 1, the angle 0, becomes independent of g, that is

n
0, = arctan (ﬁ) , (34)
where
1 _ g1L

is the deflection due to the first Fock state. Moreover, in this limit the focal length
reads

1
Fn & —5.7-'1, : (36)

where

Mv?

g2L

is the focal length of the Fock state |n = 1).
We note that we can obtain the photon statistics making use of the strong

correlation between the field state and the momentum distribution W(p) of the

atoms after they have left the field. We find this distribution by mtegratlon of

PMW)(z,p,t) over = which yields

Fy = (37)

[o0]

W) = lwa*Wa(p). (38)

n=0
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Here
— 1 d \’ . D)
Wa(p) = 75, e.xp - B (p — Mwpzysing,)* (39)
with
1/2
~ Mo, .
D, = [cos2 @n + ( hw smson> ] (40)

is the momentum distribution of the atoms due to the interaction with the n-th
Fock state. An atom which has entered the light field in the n-th Fock state with
the average momentum (p) = 0 leaves the cavity with the average momentum

Pn = Mwnz s sin gy, (41)

as indicated by the maximum of the momentum distribution W (p), Eq. (39). The
motion in the free field region conserves the momentum and hence the distribution
is independent of the position z. It is this momentum transfer which gives rise to
the deflection angle 0,, Eq. (33), via the relation 8, = arctan(p,/Mv,).

When the difference Ap,, = pp4+1 — pr in the transferred momentum due to
two neighboring Fock states is larger than the momentum uncertainty given by
the width D,, of the two corresponding Gaussians, we can resolve the contribution
of each individual Fock state. Since each Gaussian is weighted with the photon
statistics, the momentum distribution in this case is a completc rcadout of the
photon statistics as shown in Fig. 6. ’

02| @ 1 )
W) Wip)
0.1 002
° A . °
“ 20 00 0 200 p 100 °
wa #a

Fig. 6. Momentum distribution of atoms scattered by a quantized electromagnetic field
of a coherent state of average number of photons & = 1 (a) and # = 20 (b). We can
identify the contributions of the individual Fock states comprising the coherent state.
The envelope of the momentum distribution gives the Poisson photon statistics. Here we
have chosen: for (a) pa = 1/V/10, h/d* Mw, = /10, for (b) pa = V2, k/d* Mws = 1/V2
and in both cases x; = —100.

We note that in deriving the above results we have expanded the coupling
constant g(z) around the centre of the wave packet. Hence this solution is only
valid provided the wave packet has not moved considerably due to the interaction
with the light field, that is it has not moved into a regime in which the displaced
harmonic oscillator potential is not a good approximation to the potential V.
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Hence the approximation is valid if the cubic term of the expansion is negligible,
that is
1 451 d%

1
3 2
FPT = |, T S (42)

=0
This condition puts the constraint

92

|lz| <3 (43)
93

on the z-values in which the atom is allowed to move in order to uphold the
quadratic approximation Eq. (16). Hence the displacement, Eq. (32), and the width
D,(z = 0), Eq. (30), of the exiting atomic wave packet have to be within this
region. :

We conclude this section by comparing the spatial distribution W(z, 2) of
atoms, Eqs. (28)-(30), in the z—z plane to the distribution

2

1 nz+4+ Nz
(RN) - —- == 44
Wi (=, 2) 7200 ) exp (ND,QRN)(z)> (44)

with
h 2 n oz \? Y2
(RN) = 2 e 4

- () 32

obtained [9] in the Raman—Nath approximation. We note that Eq. (29) reduces to
Eq. (44) in the limit of small rotation angles ¢, = wptr < 1, such that cosp, = 1
and sin ¢, & ¢,. However, the width D,,, Eq. (30), reduces to

Dn(2) » {[dﬁzvz(””]z”z (1+ 1\’,‘:})2}1/2 )

and hence contains an additional term AL/dMv, which reflects the spreading of the
wave packet during the motion of the atom in the harmonic oscillator potential.
The Raman-Nath approximation neglects the kinetic part of the Hamiltonian
compared to the electromagnetic interaction energy and hence cannot account for
" this term.

5. Focal size and focal léngth

In the preceding sections we have discussed the complete phase space dy-
namics of the atomic motion in the quantized light field. In the present section we
illustrate this approach in simple geometrical terms. In particular we rederive the
expression Eq. (31) for the focal distance F,, of the n-th Fock state quantum lens
starting from the pictorial sketch, and calculate the size of the focal spot.

Figure 7 explains the essential points of the process of focusing. On the
right hand side we summarize the set-up whereas on the left hand side we show
the evolution of the atomic wave packet in phase space.” The atomic wave of
transverse width Az, depicted here by a fat line, enters the light field (shaded
area) at 2 = —L and leaves it slightly displaced and compressed at z = 0. Due
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Fig. 7. Quantum lens due to the n-th Fock state (right) and evolution of the atomic
beam in phase space (left). Here we only consider an interval Az of the z-axis. Due to
the interaction with the standing light field this interval is rotated by an angle .. In
the limit of small angles ©,, < 1 the displacement in z-direction is small compared to
Az. During the free evolution the considered points in phase space remain on a straight
line and cross the focal line £ = = at the same time 5. As a result the width Az of the
wave packet decreases until it vanishes at = = z;.

to the interaction with the light in the n-th Fock state different parts of the
wave packet gain different transverse momenta. As a result of the free evolution
outside of the cavity the beam focuses at the point z = F,,. This process is most
easily understood from the dynamics in phase space. For the sake of simplicity
we take the initial phase space distribution to be a line distribution of length
Az centered at = 0 with vanishing momentum. Since the potential formed by
the n-th Fock state is harmonic, the fat line representing the initial distribution
rotates in phase space by an angle ¢, around (z = z;, p = 0). This rotation in
phase space is the origin of the slight shift and the compression of the wave packet.
Moreover, different parts of the wave packet acquire different momenta which are
proportional to their coordinates. Qutside of the cavity the momentum of each
part is conserved. As a result all points of the rotated line distribution pass the
point £ = z; at the same time ¢; as shown by the fat line along the momentum
axis. Since time corresponds to the z-coordinate via the relation z = v,t — L, the
focal length F,; of the n-th Fock state reads F,, = v,t;y — L.

Now we get the focal distance F,, Eq. (31), using this picture. For this
purpose we consider the time evolution of phase space points with vanishing initial
momentum, that is p(f = 0) = 0 as shown on the left hand side of Fig. 7 by the
fat line centered at £ = 0. At a later time ¢ < ¢z, these points have moved to the
new positions '

z(t) = (zo — x5) cos(wnl) + zy,

p(t) = —Muwp(zo — z7) sin(wnt),
and now lie on the line

p(z) = —Muwy, tan(wnt)(z — ;) N CY))
in phase space which goes through the point £ = z; at the angle ¢n, = wnpt with
respect to the z-axis. After the atom has left the light field it moves freely and
conserves its momentum

pr = p(t 2 tr) = —Mw, tan(pn ) (2L — 24), (48)
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where 21, = z(tL), and the position z evolves according to
z(t) = I;‘/[—L(t —tr)+zL =[1—wntan(pn)(t —t)l(xL — z5) + 4. (49)

Therefore all points on the line Eq. (47) reach the focal spot z = z; at the same
time

1 .
tg = ————+1tg. 50
4 wp, tan(py,) L ( )
The corresponding distance in z-direction yields the desired focal length
)
= -L=—2_.
Fn = 0,85 o tan(go,.) _ (51)

This expression is identical to the one, Eq. (31), obtained from the spatial distri-
bution W(z, 2) of the atoms in Sec. 4. .

So far we have considered the extreme of geometrical optics, that is a line
distribution in phase space which is infinitely narrow in momentum. But what
happens to the focus in the framework of wave optics, that is when we admit a
finite uncertainty Ap in momentum? It results in a spreading of the focal point,
that is a width of the focus. Indeed, we estimate Ap for a wave packet with the
width d in position space via the Heisenberg-relation

h
Ap =~ 3 (52)

and consider the time evolution of the phase space point (z = 0,p = Ap). The
time ¢} at which this point crosses the line £ = z; provides via the relation
2= vzt’f — L the width §F, = z, — F,. At time ¢z the point (x = 0,p = Ap) has
moved to

sin ¢, + x5 (53)

)
LA —
Ty = —&j COSp + Mond
and
. h

P = 2y Mwy sinp, + g cos¥n- (54)
We now find the time t}, at which this point passes the focal line £ = z;. Since
the momentum p’ is conserved during the free evolution we find

7
%(t'f —tr)+zp =z : (55)
and hence
' _ ﬂ — g 56
ty =t + —(zy — =) (56)
pr

This time translates into
, , My,
Zn-:vztf—L:p—L(l'f—xL) (57)
and the width 6F, of the n-th focus reads

dz; — A%tan
— _ / Pn
6fn—zn fn—]:n [_d———l‘f-*-AzCOt(pn 1].

where A = \/h/Muw,, denotes the spread of the atom in the ground state of the
harmonic potential Eq. (17).

(58)
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We conclude this section by noting that in the limit of small angles ¢, <€ 1
Eq. (58) reduces to

Mhvd 1
dg1g5L7 n? | (59)

a result derived in Ref. [9].

6Fn=F,—Fn=

6. Summary

In the present paper we have considered the atomic motion in a quantized
field. Here we have concentrated on the atom by tracing over the field variables.
We have shown that the Wigner functions of the atom corresponding to the motion
in the potentials due to the individual Fock states separate in phase space. This
separation manifests itself either in the momentum distribution as a deflection in
different angles or in the spatial distribution as focusing in different points.
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