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Experiments have been performed to determine the Wigner distribu-
tion and the density matrix (and for pure states the wave function) of a light
mode, by using tomographic inversion of a set of measured probability distri-
butions for quadrature amplitudes. From these measurements the quantum
distributions of optical phase and photon number have been obtained. The
measurements of quadrature-amplitude distributions for a temporal mode of
the electromagnetic field are carried out using balanced homodyne detection.
We refer to this new method as optical homodyne tomography. Given the
measured density matrix, one can experimentally infer any of the various
quantum distributions of optical phase, in particular the Pegg—Barnett (or,
equivalently, Shapiro—Shepard) phase distribution, the marginal Wigner dis-
tribution, and the Vogel-Schleich operational phase distribntion. We have
used this approach to make measurements of the number-plase uncertainty
relation for coherent-state fields. The coherent states do not attain the min-
imum value for the number-phase uncertainty product, as set by the expec-
tation value of the commutator of the number and phase operators; this is
true theoretically and experimentally.

PACS numbers: 42.50. Wm, 03.65.Bz

1. Introduction

In quantum optics, measurements have usually focussed on determining val-
ues of one or more particular physical quantities, or observables, for example pho-
ton number, fleld phase, or quadrature field amplitude. Another approach towards
characterizing a physical system (actually an ensemble of similar systems) is to
determine fully its quantum state. Due to a lack of practical means for doing
so, this idea has not seen a lot of attention until recently. Here we review several
state-characterizing measurements we have carried out using the technique of "op-
tical homodyne tomography" [1, 2]. Further, we discuss the kinds of information,

•Permanent address: Joint Institute for Laboratory Astrophysics and the Department of
Physics, University of Colorado and the National Institute of Standards and Technology, Boulder
CO 80309, USA.

(71)



72 M.G. Raymer, D.T. Smithey, Μ. Beck, J. Cooper

such as phase and photon number distributions, which are available from such
a state measurement [3]. From such distributions the number-phase uncertainty
relations can be studied experimentally [4].

Recently it was pointed out by Vogel and Risken that, for a single-mode
light fleld, knowledge of a1 infinite  and continuous (uncountable) set of quadra-
ture-amplitude distributions is equivalent to full knowledge of the density matrix
operator [5]. They pointed out that the Wegner distribution, which has a one-toone
relation to the density operator, is related to this set of distributions by a projec-
tion integral in a rotated frame (the Radon transform). Further, they showed that
in principle these distributions can be measured for a mode of the electromagnetic
field by using coherent optical detection (see below). Our measurements of the
state of a light mode are based on this idea, and take advantage of the following:

1) The Radon transform is the same as that underlying the principles of
tomographic reconstuction, familiar in medical imaging. There it is known that a
finite set of one-dimensional distributions (projections) is sufficient to reconstuct
a two-dimensional density function by using the numerical algorithms known as
computer-aided tomography (CAT) [6]. The density function thus reconstucted
is unique, but is a smoothed, or filtered, version of the true underlying fnnction.
The finer the detail that is desired, the larger the number of distributions that
must be measured.

2) Recent advances in optical detection techniques [7] have made possible
the measurement of the needed distributions.

In essence, the method is this: make repeated measurements of quadrature
amplitude on an ensemble of similarly prepared light pulses; from these determine
the distributions , of these quadratures for many different valnes of local oscilla-
tor phase (this corresponds to different Hilbert-space representations); carry out
the inverse Radon transform on the set of distributions to determine the Wigner
function; from this determine the wave function and/or the density matrix.

This paper reviews the basis of tomographic state determination, and its
applications to measuring phase distributions, and also gives two new results:
the measurement of the Vogel—Schleich operational phase distribution, and the
comparison of two different methods (Eqs. (12) and (14)) for calculating the
number-phase uncertainty lower bound from experimental data.

2. Optical homodyne tomography [1, 2]
A balanced homodyne detector makes measurements that correspond to the

quadrature operator 1ο of the signal field, and that quadrature which is measured
is determined by the phase 0 of a "local-oscillator" f Lid. The set up is shown
schematically in Fig. 1. The signal field E(t) (whose state is to be determined) is
superposed on a 50/50 beam splitter with the local-oscillator field ELO(t), having
the same carrier frequency ω. The electric-field operator of the signal mode is

where ω is the optical frequency and E0 (t) corresponds roughly to the electric-field
strength of a pulse containing a single photon (an operator is denoted by a caret).
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The quadrature operation x, p are related to creation and annihilation operation
for a particular spatial-temporal mode by
and obey

for an arbitrary angle 0. This is illustrated in Fig. 2. The local-oscillator, field is

much stronger than the signal fleld, and is in a large-amplitude coherent state, and
so its operator can be approximated by a classical field, with phase θ determined
by the device labelled θ,

where ELO(t) is a c-number function. The spatial-temporal mode of the signal
field which is selected by the homodyne detector ' is the same as that of the lo-
cal oscillator. The superposition flelds are both detected by high-efficiency (80%0)
photodiodes and the resulting photocurrents are subtracted and integrated. The
difference photoelectron number Δnθ thus measured is proportional to the desired
quadrature amplitude

The rotated quadrature operation are defined  as
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Τo normalize this expression correctly the mean photoelectron number LO pro-
duced by the local oscillator pulse must be measured. The relation is [1, 2]:

Thus for a given θ, measurements of photoelectron number yield measurements of
quadrature amplitude. By making thousands of such measurements under iden-
tical conditions the probability density Po (xo ) in the form of histograms can be
determined.

For a single light mode described by s and p, the Wigner distribution corre-
sponding to a particular state with density operator p is [8]:

where |x) is an eigenstate of x and

where Ρψ are the weighting probabilities for various pure states. The Wigner func-
tion is a joint quasi-probability distribution and is especially suited for calculating
statistical moments of the rotated quadrature operation defined by (2). In the
case of a pure state there is a unique correspondence between the wave function
ψ(x) = (x|ψ) and the aligner function through the relation (x |p|x') = Ψ(x)ψ*(x').

Furthermore, the probability distribution P0(x0) for any quadrature oper-
ator "ο can be obtained by integrating the Wigner function over the conjugate
variable pθ,

To invert (8) we must determine P0(x0 ) for a certain number of phase angles θ. For
simple, smooth-shaped Wigner functions, such as Gaussians, a small number (as
few as ten) of phase values are required [9]. For more stuctured Wigner functions,
more angles are needed. We use the filtered back-projection algorithm [6] to carry
out the inverse Radon transform to yield W (x, p). Then (6) can be inverse Fourier
transformed to obtain the density matrix (x + x'|p| x - x'). This fully determines
the state of the ensemble of signal pulses.

3. Coherent-state measurements

Figure 3 shows the Wigner function measured for a coherent state of the
field 4]. This field is obtained by beam splitting a coherent laser pulse and atten-
uating one of the beams down to the order of a few photons on average. The other
beam is used as the local oscillator. It is centered near x = 0, p = 3, corresponding
to a mean photon number of 4.5.

Using the Wigner functions measured in this way, the density matrix can
be determined using (6). For these coherent-state fields we anticipate the state
to be pure. To test this, we calculate Tr(p2) for the measured p and find it to
be equal to 1.00 ± 0.02. This indicates that the states are pure to a high degree
of accuracy. Given this we can then determine the complex wave function in the
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x representation, or in the p representation. Examples of these measured wave
functions are shown in Fig. 4 for a coherent state with mean photon number 1.2.
The magnitude is seen to have a near-Gaussian form and the phase is constant
or linearly changing depending on representation, as expected from elementary
theory of coherent states.

4. Determination of optical phase distributions

From the type of measurements discussed above, the quantum distribu-
tions of optical phase and photon number have been obtained. Results have
been obtained for vacuum, coherent, squeezed, and other states [3, 4]. Given
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the measured density matrix, we can experimentally obtain (infer) any of the
various quantum distributions of optical phase, in particular the Pegg-Barnett
phase distribution [10], the Shapiro-Shepard positive-operator measure (ΡOM)
phase [11], the marginal Wigner distribution [12], and the Vogel-Schleich opera-
tional phase distribution [13]. We have used this approach to make measurements
of the number-phase uncertainty relation for coherent-state fields. The coherent
states do not attain the minimum value for the number-phase uncertainty prod-
uct, as set by the expectation value of the commutator of the number and phase
operators. This commutator expectation value is also determined experimentally
from the measured state.

4.1. Pegg-Barnett or Shapiro-Shepard ΡOΜ phase

Using the Pegg-Barnett Hermitian phase-operator formalism, or equivalently
the Shapiro-Shepard ΡOM phase formalism, one can define a probability distri-
bution for the phase. For a signal mode in a state described by any (physically
realizable) density operator p , the probability density for measuring a particular
value of the phase can be written in terms of the number-state basis as

The number-state matrix elements of are found by integrating the experimen-
tally determined (x|ρ|x') with Hermite-Gaussian functions. For all of the coherent
states we have measured with mean photon number n ≤ 8, the phase distribution
described by (9) converges for n, m ≥ 20.

4.2. Wigner phase

Another way to characterize the phase of a fleld is via the marginal Wigner
phase distribution Ρw(φ) [12]. This is defined as the overlap in phase space of the
Wigner distribution and a narrow "wedge-shaped" region, giving the probability
density for the phase to be φ:

4.3. Vogel-Schleich operational phase

A third way to characterize phase can be accomplished directly from the
quadrature distributions, without the need to reconstruct the Wigner function [13].
This can be motivated by considering a similar integration over the Wigner func-
tion as in (10), but over a narrow "highway-shaped" region extending through the
origin and making an angle φ with the x axis

the latter equality of which follows from (8) and shows that the quadrature dis-
tributions P0(x0) evaluated at x0 = 0 are all that is needed to define this phase
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distribution; tomographic reconstruction is not needed. Α conceptual limitation of
Eq. (11) is that it is periodic in π rather than in 2π as are (9) and (10). It therefore
can lead to an ambiguity in the distribution if some prior knowledge of the form
of the distribution is not available.

4.4. Experimental results

Using (9)-(11) it is straightforward to calculate the phase distributions for
our experimentally measured states. In Fig. 5a we compare the measured Wigner
phase distribution with the measured Pegg-Barnett/Shapiro-Shepard phase dis-
tribution for coherent states with different amplitudes. It is seen that as the mean

photon number decreases, the phase distribution broadens, as would be expected
from the uncertainty principle. It is also seen that the Wigner phase distribution
is more peaked than the Pegg—Barnett/Shapiro—Shepard, as is expected from pre-
vious theoretical results [14], and experiments on squeezed states [3]. Shown in
Fig. 5b are the theoretical phase distributions for coherent states with the same
mean photon number as in Fig. 5a. The theoretical results are obtained from
Eqs. (9) and (10) with the known theoretical density matrix or the Wigner func-
tion for the coherent states inserted.

Figure 6 shows the measured and theoretical operational phase distribu-
tions for a coherent state with mean photon number 3.6. For comparison the
Pegg-Barnett/Shapiro-Shepard and Wigner phase distributions are also plotted
as solid and dotted lines respectively. Note the π periodicity in the operational
phase distribution. The experimental results are represented as filled squares.



5. Number-phase uncertainty relations

Because photon number and field phase are conjugate variables, their stan-
dard deviations obey an uncertainty relation. The lower bound for the product of
standard deviations depends on the state of the field, as has been shown by two
different approaches. Pegg and Barnett used a truncated-Hilbert space definition_
of a Hermitian phase operator φ to write the uncertainty relation for the phase  φ
and photon number Ii operation in the standard operator form
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For the experimental data, the commutator expectation value is calculated numer-
ically by expressing the matrices for φ and n in the number-state-representation,
evaluating the matrix which corresponds to the commutator, and tracing the com-
mutator over the density matrix in the number-state-representation. Also plotted
are the theoretically predicted values for coherent states. For the theoretical uncer-
tainty product, Δ  was calculated in the same fashion as used to generate Fig. 6,
while the photon number standard deviation was calculated using Δn = «/Τ for a
coherent state.

Notice that the uncertainty relation is satisfied (as it must be using our
method of analysis); the uncertainty product is greater than the expectation value
of the commutator. It is interesting, however, that the equality between these
two quantities is only achieved for average photon numbers approaching zero or
approaching a very large number. This is tue for both the theoretical and exper-
imental data, so it is not simply a manifestation of our measurements.

Second, we consider the Shapiro-Shepard ΡOM phase, in which no Hermi-
tian phase operator is needed. There the uncertainty relation is derived by using
wave functions for the state in number or phase representations, and using the
discrete-Fourier transform relation between these representations. The uncertainty
relation is found to be [11]:

where ΡPΒ,SS(φedge) is the probability evaluated at the edge of the chosen phase
window. We choose the window so that the peak probability lies at its center.
Therefore

Ρp ,SS(edge) becomes smaller as the phase becomes better localized around its
average — in this limit the right-hand side of (14) approaches the simple Dirac
estimate of 1/2. It is known that the right-hand sides of (14) and (12) are exactly
equal [10, 11].
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We have evaluated the right-hand side of (14) directly from the measured
distributions in Fig. 5. The resulting points lie within 1% of the commutator
points shown in Fig. 7; this is within the precision with which we can determine
these quantities. This result shows that one may use either calculational technique
(Eq. (12) or (14)) to evaluate the uncertainty lower bound from experimental data.
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