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In many fields of atomic and molecular physics we need to combination!
center-of-mass motion with internal degrees of freedom. In this work, the
classical motion in phase space is separated from the quantum processes
by a multiple-time-scale approach. The expansion parameter is proportional
to Planck's constant. The theory is given and illustrated by examples: the
semiclassical description of a particle without internal states, the extraction
of a classical trajectory and the derivation of the light-induced force.
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1. Introduction

The relationship between the quantum behaviour of a plysical system and
its classical trajectories has turned out to be more complicated and interesting
than the text book semiclassical approximation suggests. Eric Heller [1] terms tlis
field "postmodern quantum mechanics", and its recent technical developments
have been reviewed by Child in [2]. The connection to chaos theory is discussed
by de Almeida in [3]. The relation between semiclassical distributions in phase
space and classical ensembles is also discussed b y Dowling et al. in [4]. All these
treatments do, however, use steady state wave functions corresponding to fixed
energy ensembles. In time resolved experiments, one wants to develop the theory
for genuinely time dependent problems too.

In many atomic physics and quantum chemistry situations the quantum
systems evolving in phase space have internal states that correspond to bound
states. These are coupled by collisions or external electromagnetic fields. Thus it
becomes interesting to discuss the semiclassical time evolution of a system with in-
ternal states. In the recent publication [5] we have utilized the multiple-time-scale
perturbation approach [6] to separate different processes according to their depen-
dence on Planck's constant. IIeller [7] has pointed out that the initial states, e.g.
minimum uncertainty states, add dependence on Planck's constant which makes
such an expansion ambiguous. We avoid this problem by separating the processes

(51)
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into a lierarchy  of classes. This is achieved by expanding the propagation for an ar-
bitrary initial state, which can be done uniquely. For a discussion of the procedure
and its relation to earlier work, we refer to the paper [5].

Here we introduce the expansion method in Sec. 2. By omitting the internal
states from the treatment, in Sec. 3, we can connect our results with the constant
energy ensembles discussed earlier. In Sec. 4 a classical trajectory approximation is
derived; this corresponds to the pre-assigned trajectory approximation in scattering
theory and level crossing theories. The light-induced mechanical force is derived
in Sec. 5, where the results known from e.g. Ref. [8] are obtained. In Sec. 6 a brief
discussion is presented.

2. The multiple time-scale expansion

The Wigner function is assumed to be particularly useful when the semiclas-
sical content of quantum mcchanics is desired [9]. The Wigner transformed density
matrix p is given by

Here the state |r) is the position eigenstate and vector notation is understood.
The transformation (1) to the quantum mechanical phase space {r, p} con-

cerns only the translational degrees of freedom of the quantum system; we assume
tħat this has an additional set of intrinsic degrees of freedom manifesting them-
selves as a set of discrete bound states. If we tuncate the corresponding Hilbert
space to be of flnite dimensions, the density operator becomes a matrix Pij with
indices labelling the internal states. Then the Wigner representation of the density
matrix retains its operator structure in the space of the internal states.

The equation of motion for the Wigner function can be written in the form

The potential V is a matrix in the internal indices and the derivatives act in the
direction indicated b y the arrow.

The semiclassical expansion is well known to proceed in powers of Planck's
constant ħ. This is not a dimensionless expansion parameter, and we return to this
problem in Sec. 6. We expand (2) and obtain the result

Here [ , ]+ denotes the anticommutator. This expansion is clearly in powers of
ħ1, and for no internal states all commutator terms vanish; this reproduces the
conventional semiclassical expansion of the Wigner function.
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We expect the quantum mechanical and classical features of the time evo-
lution to be observable over different time scales. From the ordinary semiclassical
expansion we conclude that the pure quantum time scale is of the order h -1 , and
consequently we introduce a sequence of time scales by the definition

The time derivative becomes (see Ref. [6])

and the density matrix is expanded as a simple power series in 11 according to

When the expansions (5) and (6) are inserted into Eq. (3) and equal powers of h
are collected, we obtain the hierarchy of equations:

To lowest order in ħ, Eq. (7) expresses the quantum time evolution at the location
r; reintroducing h, we flnd the correct Schrödinger time dependence. To order ħ 0 ,
Eq. (8) contains the classical drift derivative in phase space. The anticommutator
contains the force matrix, which in the case of a diagonal potential gives the
classical Liouville equation on the potential surfaces. However, the operator on
the left-hand side needs to be inverted in order to give the new unknown W( 1 ),
and this operator is identical with the one in Eq. (7). Thus the inhomogeneous term
on the right-hand side of (8) is in the null space of this operator, and the inversion
may not be possible. This is a situation familiar from all singular perturbation
theory problems. In the multiple-time-scale method, we use the additional degrees
of freedom offered by the many times to circumvent this difficulty.
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The following terms in the expansion, e.g. (9) and (10) follow the same pat-
tern. At each stage the new function to be determined resides inside the operator
inverted to obtain the previous ones, and time evolution with respect to Τ1 (= t)
is always given by the classical Liouville operator. The stucture of the equations
in each order is a replica of the one in the previous order but with one additional
term introducing a new operator. We will now proceed to investigate some simple
cases and their consequences.

3. The scalar case

To establish contact with some earlier work, we consider the scalar situation
where no internal degrees of freedom occur. Then all commutator terms vanish
and we are left with the equations

A way to solve these equations is to set all even order time derivatives equal to
zero. in particular no quantum evolution is included, viz.

The dependence on the time Τ1 is determined such that we satisfy the classical
Liouvile equation

in all orders. This equation is solved by the construction of the classical trajectories
obeying the characteristic equations

with the initial conditions
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for a single trajectory. Multiplied by any initial distribution P0 (r0, p0 ) this gives
the general solution to Eq. (16). The dependence on the time Τ3 is, however, not
determined, but this can be fixed using Eq. (14) in the form

This may be used to define the dependence of the solution W( 0) on the momentum
variable p, but the space dependence remains free, let us retain the δ-function for
this.

We assume that the derivative 3 V/ r3 can be replaced by a constant V";
either the potential has no higher derivatives or we assume a local expansion of
the potential around the trajectory (16)-(19) in the spirit of Heller [10]. When ħ1
is reintroduced we obtain the solution to Eq. (20) in the form

where we have introduced the Airy function

The normalization requires that

which from Eqs. (21) and (22) fixes the prefactor

In order to connect our approximate Wigner function (21) to other semiclassical
expansions we look at a simple case of one-dimensional periodic motion. In this
case a unique relation exists between time and position along the trajectory for
each half period. We choose p 0 = 0 at time t = 0, and start the evolution. The
energy of the trajectory is determined by the relation

As we move along the trajectory, this conserved quantity serves to define the
relation between r and p. However, the dependence on r0 can now effectively be
replaced by the dependence on energy and hence we can write

because there is a one-toone correspondence between time and the position along
the given trajectory according to Eq. (25).

In order to obtain the Wigner function for a microcanonical distribution
we collect an ensemble consisting of all positions along the given trajectory by
averaging over the half period Τ0 /2. We find



where the time now denotes

This transforms the function r(t) in Eqs. (26) and (28) into the variable r, and t
is replaced according to (28) everywhere.

The constant energy Wigner function now becomes the microcanonical dis-
tribution

where p(r, E) is solved from (25) and the period is given by its classical expression

The relation (29) indicates correctly that the relative weight of each position along
the trajectory is inversely proportional to the velocity, as expected from simple
classical considerations. In the limit C  , we obtain with Eq. (22) the result

using (30) it is easy to see that this expression is correctly normalized. To see the
meaning of the relation (31) we write

where E(r, p) is given by Eq. (25) and the factor 2 derives from the two val-
ues of p corresponding to each given pair {r, E}. Inserting into (31) we find the
microcanonical distribution

In order to see that this is correctly normalized, we transform the variable Ε to
the corresponding action variable I defined by

From (33) we find the distribution function in the action-angle phase plane {I, gyp}
in the form

This is trivially seen to be correctly normalized, and it also agrees with the result
derived by de Almeida (see Ref. [3], p. 173). Our procedure differs, however, from
the one used to derive semiclassical Wigner functions from JWKB wave func-
tions. As we have seen, for the microcanonical ensemble, the two approaches agree
exactly.



Semiclassical Motion of Systems with Internal States 	 57

4. The case of average motion

We assume now that the potential part of the Hamiltonian can be divided
into an average scalar potential U(r) and a slowly varying remainer ΔV(r) viz

The quantum equation (7) immediately gives

which implies an optical Bloch equation at each point in space:
The next equation (8) in the hierarchy gives

In writing this equation we have neglected the slowly varying contribution

If we again use the freedom offered by the multiple-time scales, we can solve Eq. (38)
for w( 1 ) by letting Wo0) depend on Τ1 in such a way that the riglt hand side of
(38) disappears. This. gives a classical Liouville equation which can be solved as
we solved (16) in the previous section. Selecting one single trajectory by setting
the initial conditions as in Eq. (18) we find in analogy with (19) the solution

where σ s a 2 x 2 density matrix depending on T0: Inserting the solution (40) into
Eq. (37) and integrating over the phase space {r,p} we find the equation

where we have reintrodnced Planck's constant. We find the Bloch equation we
would use with a pre-assigned trajectory determined by the initial conditions
{r0, p0 } at t = 0. This is exactly the procedure we use in the ordinary semiclassical
approximation for atomic motion in quantum optics and scattering theory.

In next order we find the new equation

Using the ansatz (40) we fmd  directly

If Traceσ is a constant, no dependence on Τ2 needs to be introduced.

5. The mechanical effect of light

In this section we are going to consider a case where the spatial dependence
of the Hamiltonian derives from the dipole interaction with an external light field
E(r, t). In the case of a two-level atom the interaction Hamiltonian becomes
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Τo the lowest order equation (7) we now add some linear relaxation terms to obtain
the equation

In the rotating-wave approximation, this equation can be solved in steady state
and we can try a solution in terms of the ansatz

W(0) = σw
0

,	 (46)
where w0 is a classical distribution fnnction and σ is a 2x2  density matrix satisfying

Trace σ = 1. 	 (47)
The result (8) gives the equation

Taking the trace of this, we find for the distribution function w0 the result

where we have introduced the physical time variable t and the effective force

The elements of the density matrix σ are to be determined from the steady state
solution of Eq. (45).

If the radiation field is of the form

the off-diagonal elements of the density matrix can be written in the form

where X is the two-level susceptibility which, for the case of spontaneous emission
between the levels at the rate γ, can be written

Inserting (51) and (52) into (50) and using the rotating-wave approximation, we
find the lorce

This shows both a dissipative and a reactive component to the light-induced force.
For a plane wave, the phase is φ = kr, and we obtain the well-known expression
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For large laser intensities I, this gives the correct saturated expression for the light
force [8].

The reactive component is given by

in contrast to the light pressure force, this gradient force is seen to follow from the
potential

If the laser is tuned below the atomic resonance, Ω < ω21, the two-level system
s drawn towards regions with larger light intensity. This effect has been used to
constuct pure light traps for neutral atoms [8].

Considering the higher order corrections, Eq. (9), we can include quantum
fluctuations into our treatment, which manifest themselves as diffusive effects.
These phenomena will be discussed in our forthcoming publication.

6. Discussion

In the main part of this paper we have used a strajghtforward expansion
in the quantum parameter ħ. Such an expansion is, however, only formal, as no
dimensionless small parameter has been extracted. From the nature of quantum
theory, it follows that no universal combination of parameters characterizes the
validity of the classical limit; the parameters of each separate problem have to
be considered. In order to find a dimensionless validity condition, we look at the
consecutive terms in the expression (3), where the convergence of the expansion

requires that

We next introduce the formal expansion parameter

where α is a length characterizing the potential V(r) and Δp is some momentum
scale of the problem. For a nearly freely travelling particle, the momentum can
change no faster than Planck's constant divided by the de Broglie wavelength λdΒ .

Thus the semiclassical expansion is good if λdΒ « α.
In this work, we have assumed the wave function to be a localized wave

packet of some finite size Δr following the classical paths. We realize that the wave
packet motion can represent classical dynamics only if its extension is much smaller
than the characteristic dimensions of the potential where it moves. Combining this
with (60) we require
λ < Δr «α. (61)

Only in this limit can we find a situation where the classical trajectories can be
defined, and we can constuct localized wave functions that follow them. This is
called the wave packet limit by Heller in Ref. [7].
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