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Ensemble averages (cos nν(t)) (n = 1, 2, 3, 4) are calculated for the
two-dimensional Smoluchowski—Debye rotational diffusion model in the pres-
ence of a DC reorienting electric field. The time dependence of (cos nν(t)) is
plotted for the special cases of (i) dipolar nonpolarizable molecules (p # 0),
and (ii) nondipolar anisotropically polarizable molecules (p = 0) and rect-
angular reorienting pulses.

PACS numbers: 77.40.+i

1. Introduction

The theory of rotational diffusion of molecules essentially hinges on the cal-
culation of statistical averages describing the time-dependence of the reorientation
of molecules in a medium acted on by external fields. For molecules of appropri-
ately high symmetry, their rotational diffusion in a liquid medium is described by
ensemble averages of the form

dependent only on the polar angle Y(t) subtended by the symmetry axis of the
molecule and the direction of the external reorienting field. These averages play
an important role in effects of dielectric dipolar relaxation (n = 1), in Kerr,s
effect, consisting in the induction of optical birefringence in naturally isotropic
media under the action of an external electric field (n = 2, 4) as well as in many
phenomena of nonlinear molecular optics [1-4].

*This work was performed within the framework of project PB 2 0130 9101 of the Committee
for Scientific Research.
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Recently, Coffey et al. [5-7], starting from the stochastic Langevin equation
for twodimensional rotational diffusion (the molecule can reorient in one plane
only!) have derived analytical expressions for the averages (Φ 1 (v, t)), 0h 2 (ν, t))
in the presence of DC as well as cosine electric fields. They also have proposed
solutions of the more general Fokker-Planck-Kramers equation for an ensemble
of noninteracting molecules at planar rotation, taking into account the moment of
inertia of the molecule.

Their method has been applied by Déjardin and Debiais [8, 9] to the descrip-
tion of changes in the refractive index of a liquid, acted on by the superposition
of a DC and an AC electric field. This permitted the plotting of Cole—Cole dia-
grams for the real and imaginary parts of the birefringence at the frequencies ω
and 2ω and has corroborated the importance of inertial effects in the range of high
frequency electric fields.

In the present work we describe a procedure giving the evolution in time of
the nonlinear functions (n > 2) of two-dimensional rotation for arbitrary shapes
of the reorienting electric pulses and quite general shapes of the external potential
(Eq. (2)).

However, our procedure does not take inertial effects into account. It nonethe-
less provides a consistent description of experimental studies of nonlinear molec-
ular optical effects performed with the use of laser pulse techniques.

We moreover present graphs of two-dimensional rotation under the action
of rectangular reorienting pulses.

2. Theory

We consider a statistical ensemble of molecules of a liquid with permanent
dipole moments μ and linear electric polarizability anisotropy Δα = α 33 - α11.
For the sake of simplicity, we shall neglect electrostatic interactions between the
molecules.

Their rotational diffusion resulting from Brownian motion and the action of
an external time-dependent reorienting torque N(ν, t) is described by a stochastic
Langevin equation. In the particular case of Brownian rotation in one plane only,
described in terms of the polar angle 17(t) (we then deal with planar rotators), the
Langevin equation takes the form [5-7]:

with 17 — the angular acceleration, 17 — the angular velocity, and I — the moment
of inertia of a molecule. By Iβv = ζν we denote the frictional torque acting on
the molecule in the liquid. In addition to the external torque N(ν, t) the molecule
experiences the action of "white noise" with λ(l) being a random torque resulting
from stochastic collisions with other molecules.

We write the change in potential energy V(v, t) of the molecule due to the
action of the external reorienting field in the form of the sum
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where v(t) is the polar angle between the symmetry axis of the molecule and the
field. The shape of the coefficients V(t)depends on how we choose to specify the
reorienting field. The molecule is thus acted on by the external torque

Essentially, it is our aim to calculate the statistical averages of the reorien-
tational functions

which describe the role of two-dimensional rotational molecular diffusion in phe-
nomena of molecular optics making use of Eq. (1) and the general expression (3)
for the torque. Into Eq. (1) we insert Eq. (3) and the time-derivatives of d:

It is customary, on grounds of the stochastic properties of white noise, to assume
that

Equation (6) simplifies considerably on neglecting the influence of the moment of
inertia on the dynamics of the molecule. This amounts to neglecting the second
time-derivative

and to assuming the angular velocity i and the average (Φn (t)) as mutually inde-
pendent statistically

where k is Boltzmann,s constant, and T is the absolute temperature of the liquid.
The assumptions (8), (9) mean that we consider times t » I/ζ sufficiently long for
the molecules to have attained the steady state given by the Maxwellian velocity
distribution.

With the assumptions (8), (9) inserted in (6) and after some simple trigonom-
etry, the following set of differential-difference equations is obtained for the non-
linear and noninertial response of the ensemble of dipolar, polarizable and nonin-
teracting molecules:
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One notes that the averages (Φn) are recurrentially related by linear dif-
ferential equations, involving rotational relaxation times of the two-dimensional
rotator τn:

The relaxation times τn should not be confounded with the well known relaxation
times (3D)τn of three-dimensional rotational diffusion [1, 4]: •

The formal solution of the set of equations (10) on imposition of the initial
condition (Φn(t = 0)) = (Φn) 0 takes the form

where we have introduced the dimensionless m-th reorientational parameter of the
molecule

The solution (13) is useful if qm (t) f< 1, a condition very well fulfilled in
experiments on molecular optics when the averages (Φn(t)) are easily obtainable
for arbitrary n and a given potential (2), with arbitrary accuracy, by the Piccard
method of successive approximations. The formula (13) tells us how the time
evolution of the external potential V(t) affects the time evolution of the averages
(50)). In what follows we shall perform calculations of the (Φn (0) for molecules
in a DC electric reorienting field.

The calculation of the averages (Φn(t)) from Eqs. (6) with the assump-
tions (8), (9) is equivalent to the search for the orientation probability function of
twodimensional rotation 1(0,t) in the form of an expansion

having recourse to the Smoluchowski equation of two-dimensional rotational dif-
fusion

Equation (16) was first used by Debye in his classical theory of dielectric dipolar
relaxation [1, 10].
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3. The relaxation functions of two-dimensional rotational
diffusion of molecules in an electric field

3.1. The general case

If the molecule is in a reorienting electric field E(t) = Eg(t), the torque (3)
is simply

For the torque (17), the counterpart of Eqs. (10) takes the form

where we have introduced the classical Langevin—Benoit parameters of molecular
reorientation [11]:

A formal solution of the set of Eqs (18) has the form

On neglecting the anisotropy of polarizability of the molecules (q = 0) in (18) and
on assuming the unit step function g(t) for the electric pulse, the above equations
become identical with the equation (B7) of Coffey,s paper [5], whereas for q # 0
and the step function they become equivalent to the equations (9.21) of the paper
by Watanabe and Morita [2].

It is our aim to calculate the averages (Φn W ) with an accuracy to the fourth
power of the field strength E 4 of the pulse on the assumption of p » 1, q » 1.
From (18) we get the set

where we have used the relations (Φ0) = 1, = (Φi).
We now proceed to consider two particular cases, namely: dipolar but non-

polarizable molecules (μ # 0, Δα = 0); and nondipolar but anisotropically polar-
izable ones (µ = 0, Δα # 0).
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3.2. A particular case: dipolar (p # 0) nonpolarisable (q = 0) molecules

Equations (21) now take the form

If no field was acting at the moment of time t = 0, that is if g(0) = 0, the initial
condition for the set (22) reads

(Φ0(0)) = 1, 	 (Φn(0)) = 0, 	 (23)
and the solution of (22) is, with an accuracy to terms O(p4 ), of the form
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The simplest case of an electric pulse is that of the DC electric reorienting
field, switched on jumpwise at t = 0:

where u(t) is the unit step or Heaviside function.
With (24), the twod-imensional rotation relaxational functions are obtained

in the form

When the rectangular pulse is switched on at t = 0, the functions (Φn (t))
(for n = 1,2, 3, 4) grow from their initial state value (Φn(0)) to their steady state
values (Φn(s.s)) (for t» τ1), respectively

The rise in time of the functions (26) is plotted in Fig. 1.
We see that the time dependence of the ensemble averages (Φn (t)) differ

for different n. The functions (Φ 1 (0) describing the linear rotational relaxation
increase, and are always posit ive; they are dominated by the exponential growth of
1—exp(t/τi). A similar result has been reported recently by Cislo and Dudek [13].
The functions (Φ 2 (t)) undergo a change in sign for short times and then grow
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Fig. 1. Time dependence of the ensemble averages (Φn(t)) (n = 1, 2, 3, 4) given by
Eq. (26), for dipolar nonpolarizable molecules, at different values of the reorientation
parameter p = µE/kT.

exponentially. The functions (Φ3 (t)) grow steeply and, on traversing a maximum,
decrease to a value of (Φ3(s.s.)), whereas the (Φ 4 (t)), after passing through minimal
short-time values, increase to (Φ4(s.s.)) by way of negative values.

The functions (φn(t)) describing the decay of twodimensional rotational
diffusion when the pulse g(t) is switched off jumpwise at the moment of time
T0 > 0 is obtained on insertion of g(t > T0 ) = 0 into Eqs. (18). Then

and obviously the decay functions are

Each of the n-th two-dimensional rotation functions decreases exponentially in
accordance with the n-th relaxation time.

3.3. Anoiher particular case: nondipolar (p = 0)
anisotropically polarizable (q # 0) molecules

In the case of a statistical ensemble of nondipolar though anisotropically
polarizable molecules, the functions (Φ n (t)) are mutually related as follows (see
Eq. (20)):
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Obviously they fall into two mutually independent sets of recurrential equa-
tions, the one for even n and the other for odd n. If, at t = 0, the pulse is still
absent, the condition (23) gives

From (33) with the initial condition (Φ0(0)) = 1, within an accuracy to terms
proportional to q4 , we obtain the following solutions:

whence the "nondipolar" two-dimensional rotational diffusion functions are seen to
rise from initial values equal to (Φ n (0))= 0 to the steady state values (for t» τ1):

in accordance with the even relaxation times τ2, τ4 and r6. Equations (34) in-
volve exponential terms, as well as nonexponential terms in t exp(-t/τ2) and
t exp(-t/τ4). The rise curves of the functions (34) are plotted in Fig. 2 for the
reorientational parameter values q=0.1, 0.2, 0.3, 0.4 and 0.5.



968 	 W. Alexiewicz, S. Kielich, L. Wołejko

Fig. 2. Time dependence of the ensemble averages (Φn(t)) (n = 2,4,6) given by
Eq. (34), for nondipolar anisotropically polarizable molecules, at different values of the
reorientation parameter q = ΔαE2 /2kT.

Figure 2 shows that all the ensemble averages for nondipolar anisotropically
polarizable molecules exhibit a qualitatively similar behaviour, though (Φ 4 (t)) and
(Φ 6 (t)) initially deviate from exponentiality.

Note added in proof

Recently, Cisło and Dudek [13] have proposed a general method for the de-
scription of the diffusional time dependence of the ensemble averages
(cos [Σnkvh(t)]) (k = 1, ..., N) of N rotation — interacting nonpolarizable
dipolar molecules — subjected to a DC or cosine electric field. Applying the
Fokker-Planck-Kramers equation, they obtained sets of recurrential equations for
the ensemble averages for two rotation (cos[n 1 v1(t) + n2v2(t)]) and for a single
(Φn (t)) = (cos nv(t)). The last set, Eq. (9) in Ref. [13], is identical with our (10)
provided that the potential (2) is given by V(t) = -V1(t) cos V.

Cisło and Dudek have solved the set analytically for the ensemble averages
(Φ 1 (t)) with accuracy up to O(E"); their solution is in good agreement with their
computer simulation, and the shape of their ensemble average corresponds to that
of our (Φ 1 (t)) plot given by Eq. (26).

It should be noted that the two-  dimensional Smoluchowski rotational diffu-
sion equation has been used recently by Coffey et al. [14] to find exact analytic
formulae for the correlation times for single domain ferromagnetic particles under
the influence of an internal uniaxial anisotropy potential and an external steady
magnetic field [14].
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