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ON THE ROUTE TO CHAOS FOR DOMAIN WALLS
WITH A MODEL OF STRAY FIELD
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The route to chaos of domain wall in thin magnetic film, which is de-
scribed by Slonczewski’s equations of motion, is analyzed numerically. Hage-
dorn’s model of surface stray field is applied. Ranges of periodic and chaotic
wall motion as a function of constant in time, drive field are found. Com-
parison of results with those obtained for Hubert’s model of the stray field
is made. :

PACS numbers: 05.45.4-b, 75.10.Hk, 75.60.Ch

1. Introduction

Domain walls in uniaxial magnetic materials exhibit an interesting chaotic
dynamics. Some years ago it was shown theoretically that for drive fields larger
than the critical field in an infinite material a structural transition occurs in the
wall and a strange attractor appears in a properly chosen phase space [1]. On the
other hand, recently it has been found for finite thickness samples that, if the
magnetic stray fields coming from surfaces of the material are taken into account
in the calculations, a transition to chaos is realized via intermittency [2]. For this
purpose, an expression for the stray fields, proposed some time ago by Hubert [3],
was used in [2].

In this note, a different expression for the stray fields is used, namely that
given by Hagedorn [4]. It-is found that, in this case, no intermittency is observed
and the route to chaos is realized via a specific sequence of periodic states. It
would be interesting to investigate the route to chaos experimentally in order
to answer the question whether such a route in real bubble garnet films occurs
through intermittency or not. : -
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2. Equations of motion

A twisted magnetic domain wall in the uniaxial magnetic bubble garnct
film is described by a pair of nonlinear partial differential equations which can
be derived from the Landau-Lifschitz equation with Gilbert’s damping term in-
cluded [5]:
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where the stray fields Hgy from the surfaces of the film are included. Here, A is
the exchange constant, v is the gyromagnetic ratio, 4mM is the saturation mag-
netization, « is the Gilbert damping constant, A = \/A/K is the wall thickness
parameter (K is the uniaxial perpendicular anisotropy constant), H, is the con-
stant drive field applied to the film. In Egs. (1), (2) g(z,t) describes the local
position of the wall and the azimuthal angle ¢(z,t) describes the direction of the
local magnetic moment of the wall with respect to +Oz axis. The coordinate z is
perpendicular to the film and parallel to the easy axis of the uniaxial anisotropy
of the film. A dot over a symbol denotes the time derivative and the subscript zz
— the second derivative with respect to the z coordinate.

The stray fields Hgy from the surfaces of the film are calculated here accord-
ing to the model proposed by Hagedorn [4] and equal
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where h denotes the film thickness. This model takes into account the fact that the
surface poles are modified by the finite wall width, while in the model proposed
by Hubert [3], used in Ref. [2], a special wall width dependent transformation is
applied to avoid singularities at the surfaces of the film. Both models are however
very simplified. In any case both models due to their compact forms enable to
analyze effectively the most important features of wall motion and have been used
in the literature.

Equations of motion (1) and (2) were solved by means of a full implicit
numerical scheme which is described in Ref. [6]. Force-free boundary conditions
were applied [5]. The initial conditions were ¢(z,t) = 0, ¥(2,0) = ¥5(z), where
5 (2) is the static distribution for the twisted wall [5].

The material parameters were taken the same as in Ref. [2]. Namely, A =
0.81 x 10~7 erg/cm, 47M = 140 G, vy = 1.75 x 107 s Oe~1, A =2.9x 10~6 cm
a=0.156,h=1.4%x10"% cm

A
[(h/2 + z)arctan ———— (D)

3. Method of analysis

To analyze the type of motion of the wall, the trajectory § (1/’;) of the

mid-point of the wall was calculated at each time step of the integration pro-
cedure. The tilde denotes that the values of 7 and 3 averaged over the thickness
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of the film were subtracted from the instantaneous values of ¢ and 1, respectively,
because in this paper we are interested in the wall structure during the motion but
not the overall translational motion of the wall. Only asymptotical trajectories are
analyzed, i.e. such for which all transients are ceased.

4. Results

For drive fields H, very small, the point attractor was obtained and for
intermediate values of H, the periodic attractor with a characteristic double-loop
shape was found, similarly as in Ref. [2] (see Fig. 1 here and compare with Fig. 4 of
Ref. [2]). For drives larger than a certain value of about 26.67 Oe another periodic
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Fig. 1. Periodic attractor for H; = 26.675 Oe.

4y
7 0

K131

Fig. 2. Periodic attractor for H; = 26.677 Oe.
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Fig. 3. Periodic attractor for H, = 26.70 Oe.
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Fig. 4. Periodic attractor for H, = 26.90 Oe.

attractor appears (Fig. 2) and for H, = 26.686 Oe we find a similar attractor as
the last one but with the period doubled (Fig. 3). This kind of attractor (with
a small deformation) is found still at H, = 26.80 Oe but at 26.90 Oe all traces
of doubled period disappear and the shape of the attractor is basically the same
as at 26.68 Oe (Fig. 4). Finally at drives higher than H, = 26.92 Oe the chaotic
attractor is obtained (Fig. 5), with exception of some periodic windows (e.g. for
H, = 35.00 Oe), where the shape of the attractor is similar to that in Fig. 1.
Comparing with the results obtained in Ref. [2], we find that the route to
chaos depends strongly on the form of the stray fields coming from the surface
magnetic poles. The use of Hagedorn’s expression for the stray fields leads to a
more complicated route to chaos than that found for Hubert’s expression of [2].
Instead of the route via intermittency, the route to chaos is realized via a specific
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Fig. 5. Chaotic attractor for H, = 26.95 Oe.

sequence of periodic states and no traces of intermittency are found in the present
case. Similarly as in [2], the route to chaos culminatesin a collision between two
attractors in phase space. This may be seen from the shape of the trajectories in
Fig. 5 in which traces of both the periodic attractors of Fig. 1 and of Fig. 2 can
be easily identified. Note, however, that here the competing attractors are both
periodic while in Ref. [2] one of them was chaotic. The reason for such qualitative
change in the dynamics between two models of the motion of the twisted wall
seems to lie in the way the two kinds of surface stray field expressions treat the
solitary wave (Bloch line) which appears in the structure of the wall as this wave
reflects at the surfaces of the film. With Hagedorn’s model of the stray field, a
barrier of a monotonically increasing albeit finite height is encountered by the
solitary wave as it approaches the surface of the film. In Hubert’s model the
barrier decreases sharply close to the surface thereby making the rotation of the
magnetic moment at the surface of the film (necessary for the reflection of the
Bloch line to occur) easier. As a result then, the two different models represent
two significantly different types of boundary layer. It is interesting then that the
type of a somewhat thin boundary layer influences the route to chaos of this, after
all, a spatially extended system as a whole in such a qualitative manner.

It would be interesting to investigate the transition to chaos experimentally.
Note at this point that the formula of Hagedorn has been shown to predict the
critical field for the transition to chaotic solutions reasonably well [7] although the
concept of chaos and so the route to it was not studied at that time. The formula
of Hagedorn was also tested in [8] with good results against experimental data on
the apparent width of the dynamic diffuse wall observed in [9] — but again the
route to chaos was not studied then. On the other hand, the values of the peak
velocity of the wall in the presence of the in-plane field, obtained numerically with
the formula of Hubert, agree quite well [6) with the experimental data found in
the rocking method experiment [10]. To conclude, it would seem interesting to
investigate again domain wall dynamics in bubble garnet materials in the range
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of drive fields around the transition to dynamic Bloch line stacking — this time
within the context of the concept of deterministic chaos — this could shed new
light on the transition discussed here.
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