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It is shown that the classical Maxwell theory admits a simple and natu-
ral renormalization of the self-interaction energy. This leads to a consistent,
local and causal, relativistic theory of the Maxwell field interacting with clas-
sical, charged, point-like particles. The theory may be regarded as a simple
and necessary completion of special relativity. The renormalization method
proposed here is a realization of Einstein's idea of "deriving equations of mo-
tion from field equations". It is shown that Dirac's "3-dots" equation does
not describe a fundamental law of physics, but only a specific family of so-
lutions of our theory, corresponding to a specific choice of the field initial
data. 	
PACS numbers: 03.50.De, 04.20.Me

1. Introduction

Usual approaches to the problem of interaction between electromagnetic field
and classical point-like particles lead to infinite self-interaction energy. This way
classical electrodynamics splits into two incompatible parts: (1) Maxwell theory for
the evolution of the electromagnetic field with given sources and (2) Lorentz theory
of motion of test particles (i.e. point particles, which themselves do not influence
the field). Any attempt to describe the composed "particles + field" system by
putting together these two parts leads to a contradiction: due to Maxwell equations
the Lorentz force will always be infinite.

There have been many attempts to "renormalize" this infinity (e.g. [11),
based on different "cut-offs", but none of them is satisfactory. Most of these theo-
ries assume finite particle's dimension. But then, an infinite amount of information
(Poincaré stresses) is necessary to describe the interior of the particle. Many ef-
forts have been made to replace this infinite number of internal degrees of freedom
by a finite number of "collective degrees of freedom" of mechanical nature, i.e.
to approximate field theory by mechanics. The easiest way to do this consists in
assuming that the particle is rigid (see [3] and [4]), but then the theory is no longer
relativistic. Moreover, the results obtained this way are highly dependent upon the
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dimension of the particle. Its radius r0 plays the role of a "cut-off parameter" and
the resulting "renormalized Lorentz force" tends again to infinity when r 0 —> O.

A similar "cut-off"' is provided by the non-linearity parameter in the Born—In-
feld theory [5]. Again, the finite results of such a theory are unstable with respect
to small changes of this parameter.

Another approach was proposed by Dirac (see [2]), who tried to eliminate
the field from the composed "particles + field" system, and to calculate only the
field's global influence on the particles' motion. Although some solutions of the
Abraham—Lorentz—Dirac equation obtained this way, seem to describe well the
"radiative friction" in specific physical situations, the theory is obviously incon-
sistent, because it breaks the symmetry of electrodynamics with respect to time
reversal and admits non-physical, self-accelerating solutions. This is due to the fact
that Dirac's approach is based on a non-physical decomposition of the field into
the "retarded" and the "radiative" component and does not describe the interac-
tion of particles and fields in terms of locally defined quantities. (It is interesting
to note that the "good" solutions of the Abraham—Lorentz—Dirac equations are
also solutions of the theory presented in the present paper — see Sec. 7.)

In this paper we present a consistent theory of the Maxwell electromagnetic
field and point-like particles interacting with the field. Each particle is character-
ized by its rest mass m and its electric charge e. Within this framework there is
no possibility of describing multipole particles and the reason is not technical but
fundamental, related with the U(1)-gauge structure of electrodynamics. The mass
m is "already renormalized" and represents the total energy (including the energy
of the electromagnetic field surrounding the particle) of the particle at rest.

Physically, the theory is derived from an extended-particle model by a suit-
able approximation procedure, developed in Ref. [6]. Instead of looking for a trick
enabling us to "renormalize" the infinite energy of the Coulomb field and make
it finite, we observe that the integral representing the difference between the field
energy carried by two solutions of Maxwell equations, corresponding to two trajec-
tories which are tangent at the time t 0 is finite! Moreover, the same is true not only
for the energy but for the total four-momentum (see Sec. 2). This observation leads
immediately to an "already renormalized" formula for the total four-momentum
of the system composed of particles and fields. Indeed, at any point x(t) of the
particle's trajectory we may define the total four-momentum of the system as the
sum of two terms: (1) the total four-momentum of the uniformly moving particle
(and its surrounding field) having at x(l) the same velocity as our particle and (2)
the difference between the two. The latter being already well defined and finite, it
is only necessary to define the first one. Here, the extended particle model leads
unambiguously to the value muμ where Uµ is the four-velocity of the particle.

This way, for any solution of Maxwell equations with a δ-like sources, we
assign the total four-momentum of the composed (particle + field) system to each
point of the particle's trajectory. For a generic trajectory and a generic solution
of Maxwell equations, the quantity obtained this way is not constant along the
trajectory. We impose the conservation of the above total four-momentum as an
additional condition which we add to the standard Maxwell theory. Together with
this condition, the theory becomes finite and causal: the initial data for both
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particles and fields uniquely determine the future and the past of the system,
although the Lorentz force acting on the particles remains always ill defined.

The total four-momentum being defined by an integral, its conservation is a
non-local condition. Nevertheless, our theory is perfectly local. Indeed, we prove
that, due to Maxwell equations, our conservation condition is equivalent to a
boundary condition for the behaviour of the electromagnetic field on the parti-
cle trajectory. We call this condition the fundamental equation of the theory (see
Sec. 4). The field equations of our theory are therefore precisely the linear Maxwell
equations for the electromagnetic field with point-like sources. The new element
which makes the system behave in a causal way is the above boundary condition,
with the particle trajectory playing the role of the moving boundary.

Mathematically, the theory is therefore formulated in terms of a problem with
moving boundary.

An important ingredient of our theory, which makes it work, is the following
observation, presented in Sec. 3, concerning the mathematical structure of linear
electrodynamics with δ-like sources. For any solution of Maxwell equations which
is regular outside of the sources, the particle's acceleration is uniquely given by
the (r -1 )-term of the field in the vicinity of the particle. We stress that this is a
property of Maxwell equations. Hence, the acceleration of the particle is implied
by the field initial data, without assuming any equation of motion.

The above statement may look as a paradox: we have been always taught
that, for a given trajectory, the field initial data for the unhomogeneous Maxwell
equation may be chosen almost at will, the only constraint being that the di-
vergence of the electric induction must match the (δ-like) electric charge density.
What then happens if we change the (r -1 )-term of field initial data at t = t 0 and
solve the Maxwell equation with the new data, keeping the same trajectory? This
way we will obtain a solution for which the previous relation between the field and
the acceleration is no longer valid!

The answer is very simple: the solution obtained this way is not regular. Its
singularity propagates along the light cone from the point at which the relation
between the (r -1 )-term of the field and the acceleration has been broken. The
regularity condition really excludes such a behaviour.

In Sec. 4 we show also that the limit of our theory for e — 0 and m —> 0
with their ratio being fixed, coincides with the Maxwell-Lorentz theory of test
particles. However, for any finite e the acceleration of the particle cannot be equal
to the Lorentz force, the latter being always ill defined.

In Sec. 5 we sketch the proof of the fundamental equation. For this purpose
we rewrite the field dynamics in the rest frame of the particle. This is an accelerated
reference system and not an inertial one. Its use simplifies considerably all the
subsequent calculations.

The complete many-particles case is discussed in Sec. 6. In particular, as-
suming that one particle is very heavy and practically does not move, we may
consider its own Coulomb field as an "external field". This way we are led to an
extension of our theory, where the light particle interacts not only with its own
"radiation field", but also with an "external field" or simply a field produced by a
heavy external device. This extended theory is also discussed in Sec. 6.
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Although the field equations of the theory are linear, the moving boundary
condition makes it relatively difficult. The method developed in Sec. 5 enables us
to replace the problem with moving boundary by a problem with fixed boundary,
but the price we pay for it is an effective non-linearity of the resulting dynami-
cal system. It is therefore highly non-trivial to produce exact solutions. There is,
however, a one-parameter family of third order ordinary differential equations for
the particle trajectory, which result from our theory and which may be useful to
construct exact solutions in special physical situations. Each of them is obtained
from a specific "Ansatz" for the field surrounding the particle. We analyze this
method in Sec. 7 and show that, in particular, the Abraham—Lorentz—Dirac equa-
tion may be obtained this way as a particular example. Therefore, all the solutions
of the Abraham—Lorentz—Dirac theory (also the self-accelerating ones) fulfill the
dynamical equations of our theory. However, to maintain such a self-acceleration, a
non-physical ("fine tuned") choice of field initial data is necessary, with an infinite
amount of field energy prepared far away from the particle. In this way a curious
role of Dirac's "time arrow" has been explained: it is not a fundamental property of
the theory, but has been introduced by the choice of initial data. The theory itself
remains symmetric with respect to time reversal and the Abraham—Lorentz—Dirac
"force of radiative friction" may be changed completely (e.g. may be multiplied
by —1) if we change field initial data.

Although the problems with moving boundaries are always technically more
complicated, the conceptual structure of our theory is extremely simple. The au-
thor wonders why it was not discovered at least 70 years ago. The only reason
for that could be the usual fear of theoretical physicists to deal with boundary
problems (see [7]). Even when describing a particle in a finite box, people usually
prefer to consider "periodic boundary conditions" than to use any realistic de-
scription of the boundary data for the field. Similarly, the ordinary description of
the Ilamiltonian structure of field theory is based on integration by parts and the
dogma of vanishing of all the surface integrals obtained this way (cf. e.g. [8]). As
we shall see, in electrodynamics of moving particles the surface integrals do not
vanish. On the contrary, they carry the entire useful information about particle
dynamics (see also [9-11]).

2. Renormalized total four-momentum

Here we define the total four-momentum pλ of the system composed of the
point-like particle and surrounding Maxwell field. Let y  = q(t) or yk=  qk(t),
k = 1, 2, 3 with t = y°, be the coordinate description of a time-like world line
with respect to a laboratory reference frame, i.e. to a system (yλ), λ = 0, 1,2,3,
of Lorentzian space-time coordinates.

We assume that the field fµv satisfies the standard vacuum Maxwell equa-
tions with Doint-like sources
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Here v = (vk), with vk := qk , is the corresponding 3-velocity and v2 denotes the
square of its 3-dimensional length (we use the Heaviside—Lorentz system of units
with c = 1).

The field carries the Maxwell energy-momentum tensor

The tensor has an r-4 singularity on the particle trajectory ζ, corresponding
to the r-2 singularity of the field fµv, and cannot, therefore, be integrated over
3-dimensional space-like hypersurfaces.

Take now two trajectories ζ1 and ζ2 , which are tangent at a point (t, q(1) (t)) =
(t, q(2) (t)). Let f(1)) and f (2) be any solutions of the corresponding Maxwell equa-
tions (1). The following relative four-momentum, representing the difference be-
tween the four-momentum carried respectively by f( 1 ) and f( 2), is well defined and
finite

where Σ is any space-like hypersurface intersecting both trajectories at the point
where they are tangent to each other. By dΣ we denote the 3-dimensional volume
element on Σ and "P" denotes the principal value of the singular integral, defined
by removing from Σ a sphere K(0, r) around the particle and then passing to the
limit r —> 0. We assume that Σ fulfills standard asymptotic conditions at infinity
(see e.g. [12]) killing all the surface integrals at infinity which arise in deriving
energy-momentum conservation laws.

The quantity (4) is well defined because the r -4 singularities of the two
tensors cancel. Moreover, the r- 3 singularities are always odd (see [6] for more
detailed analysis). This means that the values of the r -3-term at the antipodes
have opposite signs. Hence, their contribution will be canceled by the principal
value procedure.

It can be proved (see again [6]) that the above quantity does not depend
upon the choice of Σ within the class of surfaces which intersect our trajectories
always at the same point. It is relatively easy to prove this invariance within a
class of hypersurfaces tangent to each other at the intersection with the trajectories.
Indeed, due to Maxwell equations both tensors are conserved outside of the particle

The difference between the values of the integral corresponding to two different
E's is therefore equal to a boundary (surface) integral. The boundary is composed
of two parts: infinity and a piece V of a tiny world tube of radius r around the
particle. The integral at infinity vanishes if the field fulfills standard asymptotic
conditions at infinity (see again [12]). The 3-dimensional volume of V behaves at
least like r4 (2-dimensional volume of the spheres behaves like r 2 and the 3-rd
dimension of V, equal to the time interval between different Σ 's, behaves also like
r2 since they are tangent to each other at r = 0). Hence, the integral over V of a
function behaving like r-3 vanishes in the limit r —> O.

In Ref. [6] we give a more detailed analysis of the behaviour of the energy-mo-
mentum tensor in the vicinity of S, which enables us to extend the above proof to
the case of general Σ 's, not necessarily tangent to each other.
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Formula (4) suggests, that for a given trajectory 	 ζ and a given point
(t, q(t)) € ζ the total four-momentum of the "particle + field" system may be
defined as the sum of two terms: (1) the total four-momentum of the uniformly
moving particle (and its surrounding field), matching the velocity of our parti-
cle at (t, q(t)) and (2) their relative four-momentum. Hence, we define the total
energy-momentum by the following formula:

where Σ is any hypersurface which intersects the trajectory at the point (t, q(t)).
By T0^ v we denote the energy-momentum tensor of the Coulomb field, boosted
in such a way that the position and the velocity of its singularity at (t, q(t)) match
the corresponding position and the velocity of our particle. Due to the invariance of
the above integral with respect to changes of Σ , the total four-momentum defined
this way depends only on the point of the trajectory.

Formula (6) may also be derived from an extended particle model via the
following approximation procedure.

We imagine our "particle at rest" as a stable, soliton-like solution of a hypo-
thetical fundamental theory ("super theory") of interacting electromagnetic and
matter fields. We assume this theory to be relativistic and gauge invariant. More-
over, we assume that for weak electromagnetic fields and vanishing matter fields
(i.e. far away from the particles) the theory coincides with Maxwell electrodynam-
ics. The parameters e and m are the total charge and the total mass (including the
electromagnetic part) of the non-perturbed soliton. In particular, the parameter
m is an already renormalized mass, (or dressed mass), including the energy of the
field surrounding the particle. Within this framework questions like "how big the
bare mass of the particle is and which part of the mass is provided by the purely
electromagnetic energy?" are meaningless. In the strong field region (i.e. inside the
particles) the energy density may be highly non-linear and there is probably no
way to divide it consistently into such two components.

Due to the relativistic invariance of the theory, there is a 6-parameter family
of the "uniformly moving particle" solutions obtained from our soliton via Poincaré
transformations.

A general moving particle is understood as a "perturbed soliton" . This
means that it is again an exact solution of the same "super theory", with its
strong-field-region concentrated in the vicinity of a time-like world line C, which is
no longer a straight line, as it was for "uniformly moving particles".

Calculate the total four-momentum of such a solution. For this purpose
we choose any Σ and integrate the total energy-momentum tensor of the "su-
per theory" over Σ . This integral may be decomposed as a sum of the total
four-momentum of the "uniformly moving particle" solution and the correspond-
ing difference. This way we obtain the formula analogous to (6), where the en-
ergy-momentum tensors under the integral sign correspond now to two different
solutions of the "super theory". Outside of the particles they reduce to the Maxwell
energy-momentum tensors, because the entire theory reduces to the Maxwell

theory. The contribution from the strong field region (i.e. from the possibly strong
matter fields) is negligible, because both solutions do not differ too much inside
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of the particles (this is implied by the stability of our soliton). This means that
the purely electromagnetic contribution which we left in formula (6) is a good
approximation of the real value.

Noether theorem applied to our "super theory" implies the conservation of
the total four-momentum. But for a generic trajectory C and a generic solution of
Maxwell equations (1) the quantity (6) is not conserved, i.e. it depends upon t. We
conclude that only those solutions of Maxwell equations, for which pλ(t) does not
depend on time, may approximate the real motion of the true "perturbed soliton",
governed by the field equations of the "super theory".

We shall see in Sec. 5 that only three among these four equations are indepen-
dent. As independent conditions we may use e.g. the three-momentum conservation
law

which implies also the energy conservation

The above equations, together with the Maxwell equations for the electromagnetic
field, define a mathematically consistent, fully deterministic theory. Starting from
an appropriate variational principle, it may be proved that pk(t) is really a mo-
mentum canonically conjugate to the particle position qk(t) and p°(t) = -p0(t)
(we take the signature (-, -ł- , d-, +) of the space-time metric) is the Hamiltonian
of the entire system composed of particles and fields.

3. Boundary conditions for the Maxwell field

Given a regular solution of (1), there is one-to-one correspondence between
the r-1 term of the field in the vicinity of each point (t, q(t)) E and the accelera-
tion of the particle at this point. The formula — although relativistic invariant —
is relatively complicated. We will need only its rest-frame version. It follows from
the following expansion of the rest-frame components of the electric induction field
in the vicinity of the particle:

Here a = (ak) is the acceleration of the particle (in the rest frame we have a° = 0)
and 0(1) denotes the nonsingular part of the field. The magnetic field Bk (r) does
not contain any singular part.

We stress that the relation between the particle's acceleration and the r -1

component of D, implied by formula (9), is not a new element of the theory. Al-
though the author has never seen it written in this explicit form, it is implicitly
contained in the formula for Lienard-Wiechert potentials, (e.g. formula (14.14) in
Jackson's book [10] or formula (6-62) in Rohrlich's book [2]). Choosing the rest
frame (v = 0) and calculating the limit of the retarded (or advanced) field in
the neighbourhood of the particle one easily proves Eq. (11) for the retarded (ad-
vanced) solution. Any regular solution of (1) differs from the retarded (advanced)
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solution by a smooth solution of the free Maxwell equation, i.e. the one which
does not change the singular part of (9). Hence, the formula is valid universally
(in Ref. [6] we give an independent proof, which does not make use of any specific
— retarded or advanced — solutions).

It is useful to rewrite Eq. (9) as a condition for the behaviour of the radial
component Dr of D. For this purpose we expand Dr in the neighbourhood of the
particle into powers of r

where by 0(r) we denote terms vanishing for r —> O like r or faster. For a given
value of r both sides of Eq. (10) are functions of the angles (only the r-2 term is
angle-independent).

It is easily seen that the condition (9) is equivalent to the following constraint:

Here we use the one-to-one correspondence between the 3-vectors and the "dipole-
-like" functions of angles, i.e. functions of the form (a=x')/r. Formula (11) means,
in particular, that the quadrupole and higher harmonics of the function a do
vanish.

The above observation suggests the following point of view. Maxwell equa-
tions (1) have to be solved as a boundary problem rather than as a distribution
equation on the entire space-time M. More precisely, we consider the evolution of
the free field in the region Mc := M — {ζ}, that means outside of the trajectory.
Equation (11) provides the boundary condition on the boundary DMc of M.

There are various ways to set up the boundary value problem in electrody-
namics. The best known are Dirichlet and Neumann problems for electrodynamical
potentials. Here we found it most useful to assume boundary conditions corre-
sponding to the given double layers of electric and magnetic dipoles. In this way
the values Dl and B1 (components of both the electric and the magnetic fields,
normal to the boundary) are controlled. It was shown in Ref. [11] that under this
choice of boundary conditions on DV, the Hamiltonian generating the evolution of
the field in the region V coincides with the total energy of the field.

The particle trajectory may be considered as a limit of tiny world-tubes.
It may be shown that the natural limit of the boundary conditions for Dl and
B1 consists in fixing their singular parts at zero. Thus, for an a priori given
particle trajectory, Eq. (11) provides the condition for Dl on its boundary. The
corresponding condition for the magnetic field follows from the assumption about
the vanishing magnetic moment of the particle: Br(r) = 0(1) (i.e. the singular
part of Br vanishes). The reader may easily check that, for a given trajectory, the
homogeneous Maxwell equations outside of the particles together with the above
boundary conditions are equivalent to the non-homogeneous system (1).

Now, let us consider an extended system, where also the particle trajec-
tory is treated as a dynamical object and Eq. (11) is one of dynamical equations,
enabling to calculate the particle's acceleration from the initial data. Observe,
that a remarkable phenomenon occurs. Despite the fact that the time derivatives
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(D, B, q, v) of the Cauchy data (D, B, q, v) are uniquely determined by the data
themselves, the evolution is not uniquely determined. This is due to the fact that,
after upgrading Eq. (11) to the level of dynamical equations, we can no longer use
it as a boundary condition. Hence, Maxwell theory alone provides sufficiently many
dynamical equations of the theory, but a new boundary condition is necessary. The
new element of the theory is precisely this missing boundary condition, implied
by the conservation law for the renormalized total four-momentum, defined in the
previous section.

The situation is similar to that in classical theory of a finite elastic body V
(e.g. a finite piece of an elastic string). The theory contains sufficiently many dy-
namical equations, but the evolution is not uniquely determined unless we restrict
ourselves to the class of solutions fulfilling the appropriate boundary conditions
on the boundary 8V.

4. Fundamental equation. Correspondence principle

Here we present the fundamental equation of our theory, which is the nec-
essary and sufficient condition for the total momentum conservation (7). It is
formulated as a boundary condition for the behaviour of the field in the vicinity
of the particle. Again, for the sake of simplicity, we write it down in the particle
co-moving frame, i.e. in the form of a relation between different terms of expan-
sion (10). The relation reads

where by DP(f) we denote the dipole part of the function f on the sphere S2 .
This equation (together with the vanishing of the singular part of the magnetic
field B) provides the missing boundary condition for the behaviour of the field
Dr on the boundary 8M( of the region M. Dynamical equations of the theory
are, therefore, the Maxwell equations alone. They will determine uniquely the
evolution of the system composed of particles and fields if we restrict ourselves to
solutions fulfilling the boundary condition (12). In this way the system becomes
an infinite-dimensional dynamical system (it is even a Hamiltonian system).

Although the Lorentz force acting on particles is always ill defined, it is
contained in our theory as a limiting case, when particles are very light and carry
a very small charge. Indeed, passing to the limit with m  O and e —> O (but
keeping their ratio constant), we obtain the standard theory of test particles,
where the field is not influenced by the particles and the particles are influenced
by fields according to the Lorentz force. To prove this feature of our theory we use
Eq. (11) to rewrite Eq. (12) in the following, equivalent form:

For e = O Eq. (1) reduces to the free Maxwell equation and the first two terms of
Eq. (10) vanish. The field is, therefore, regular at r = 0. For regular fields the radial
component of D contains only the dipole part: DP(β) = (Di(0)xi)/r = (Ei(0)xi)/r
(higher harmonics behave like 0(r) and the electric field E coincides with the
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electric induction field). Therefore, Eq. (13) is equivalent to the equation defining
the Lorentz force in the rest frame

Hence, we have proved that our theory fulfills the correspondence principle
with the Lorentz theory of test particles. We stress, however, that the interpreta-
tion of Eq. (13) as the Lorentz force is not possible for a particle with finite charge
and mass. Due to the first two (singular) terms in Eq. (9), any attempt to define
the Lorentz force in this case leads to infinite expressions. Considering the particle
as a limit of a small, spherical droplet of matter, the r -2 term can be eliminated
(the forces, although big, cancel out because of the spherical symmetry). How-
ever, such a "renormalization" fails for the r-1 term which will always be infinite.
We see that the Lorentz force cannot be meaningfully defined for point particles
not only because of the "proper field", which increases like r -2 , but also because
of the infinite contribution of the remaining "radiation field". Moreover, also the
non-singular term of D cannot be used to define the Lorentz force in a reasonable
way, because its value at r = O cannot be uniquely defined (different values of its
limit at r = O may be obtained if we approach the origin from different directions
— see formulae (34), (35) and the discussion which follows).

We conclude that the Lorentz force is a well-defined concept for test parti-
cles only and has no meaning for a finite particle. Nevertheless, the dynamics of
the system composed of particles and fields, given by Maxwell equations and the
boundary condition (12), is well defined and fully deterministic: initial data for
particles and fields uniquely determine the entire history of the system.

Thus, we have shown that the evolution of interacting particles and fields is a
problem with moving boundary for the Maxwell equations. The particle trajectory
plays the role of the boundary. Such problems are often considered in the theory
of continuous media (see [13]) and this analogy is a good guiding principle in the
analysis of our problem.

5. Co-moving description of the field dynamics.
Idea of the proof of the fundamental equation

The easiest way to prove the equivalence of Eq. (12) with the momentum con-
servation (7) consists in rewriting Maxwell equations in the particle's rest frame.
This is not an inertial frame, but an accelerated one, described by a curvilinear
system of space-time coordinates.

For this purpose let us parameterize the trajectory ζ by its proper time r.
At each point (γµ(r)) E of the trajectory take the 3-dimensional hyperplane Σt
orthogonal to ζ. We shall call Σ r the "rest frame surface". Choose on E T any
system (x i ) of cartesian coordinates, such that the particle is located at its origin
(i.e. at the point xi = 0).

Let us identify the space-time with the disjoint sum of rest frame surfaces
Er , each of them corresponding to a specific value of the coordinate x° := r
and parameterized by the coordinates (xi). This way we obtain a system (xa) =
(x°, xk) of "co-moving" coordinates in a neighbourhood of ζ. Unfortunately, it is
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not a global system because different Σ 's may intersect. Nevertheless, we will use
it globally to describe the evolution of the electromagnetic field from one ΣT to
another. Because of the hyperbolic structure of the theory, this is a well-defined
problem. Formally, we will simply rewrite the field equations with respect to the
curvilinear system x°.

For this purpose we need to find the space-time metric components. Because
(xk) are cartesian coordinates on Σ, the space-space components of g are trivial:
gib = δij. It is easy to see that the only non-trivial components of g are: the lapse
function

where a = (ai) is the particle's acceleration vector in the co-moving frame, and
the (purely rotational) shift vector

where the rotation vector ω depends upon the coordination of the cartesian
systems (xi) between different Σ 's. The simplest 0(3)-coordination consists in
Fermi-propagating each of the xk-axis along S. In this case the shift simply van-
ishes and we have g0re = 0.

The components of the flat, Minkowski connection, can be obtained as Christ-
offel symbols for the above metric

and the remaining components vanish.
The metric and the connection are degenerate at singular points of the identi-

fication map (i.e. where the identification is locally non-invertible because adjacent
E's intersect, i.e. where N = 0). Nevertheless, electrodynamics may be rewritten
in coordinates (x°`) just as in any other curvilinear system of coordinates, using
the above representation of the space-time geometry.

In particular, formula (6) rewritten in curvilinear coordinates, gives the
following expressions for the rest-frame components of the total four-momentum:

The factor (1 -1- aixi) in formula (19) is necessary because only the co-vector
(1 + aixi)dx° (and not dx°) is constant on Σ (similar corrections in Eq. (18),
corresponding to the upper zero and to the lower zero, cancel each other).
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To calculate the time derivatives of Pα we use the conservation laws

In this case the surface integral does not vanish. Using formula (9) to calculate the
contribution of singular terms of the field, we may easily check that it is composed
of two terms: (1) a (r -1 )-term which annihilates the corresponding term coming
from the Coulomb field, and (2) the regular term equal to the k-th component lik of
the dipole part of the function P. The component is defined by the decomposition



On Electrodynamical Self-Interaction 783

where (Pa) = (71, Pk ) and the value of the connection components has to be taken
on the trajectory (i.e. Γok = ak and Γ0o = ak). Hence, the system (7) and (8) is
equivalent to the following system of equations for the rest-frame components of
the four-momentum:

Comparing them with Eqs. (24) and (27) we conclude that one among them
is always satisfied. We see that the necessary and sufficient condition for the total
four-momentum conservation is given by equation

equivalent to the fundamental Eq. (12).

6. Many particles. Interaction with heavy external devices

Although up to now we have considered only a single particle interacting
with the Maxwell field, our theory is formulated in terms of local quantities and
can be immediately extended to the case of many particles: the field outside the
particles has to fulfill the Maxwell equations with the total current being the sum
of the contributions from all the trajectories, and the boundary condition (12) has
to be satisfied on each trajectory separately.

The above law can be derived from a renormalized four-momentum formula
analogous to (6), in which there is a term T(t)μλ and a term mu), for each parti-
cle separately. Any variation of Σ which does not change the intersection points
with all the particle trajectories, does not change also the value of pλ. To prove
this fact we use the same arguments as in the case of one particle. Hence, the
total four-momentum defined this way depends upon the choice of the intersection
points only: one for each trajectory. Assuming the independence of p), upon the
intersection points one finally gets the fundamental equation separately on each
trajectory.

Consider now the limiting case of the two particles problem, when one of
the two particles is very heavy and practically does not move: its acceleration
a calculated from Eq. (11) is of the order of 1/m which, for sufficiently large
m, can be neglected. This means that we do not need to satisfy the boundary
condition for the heavy particle (its "infinitesimally small" acceleration fits any
value of DP(β) in formula (13) when multiplied by its "infinitely big" mass). The
boundary condition has to be satisfied for the light particle only and our co-moving
description of the field may be used also in this case.

The heavy particle may be replaced by any heavy (macroscopic) device con-
taining charged bodies, magnets etc. (e.g. an accelerator). Let (φ ext , fext) be an
exact solution of our "super theory" of interacting matter fields and electromag-
netic field, which represents such a device and its own electromagnetic field. We call
the field "external", because it plays such a role for our (relatively light) particle
interacting with the device.
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Suppose now that there is another solution (φtotal,, f rota')  of the "super the-
orf which represents such an interaction. We assume that the total strong field
region of the new solution consists of the device's own strong field region (i.e. the
strong field region of the previous solution) and the separate region concentrated
around the approximate trajectory C of the light particle. It is important to assume
that the trajectory does not intersect the strong field region of the device.

Let us define the "radiation field" f as a difference between the two solutions

The radiation field satisfies the Maxwell equations outside of the matter, because
both Pets and feat do. The boundary condition (12) for f total on the trajectory
ζ can be rewritten in terms of the boundary condition for the radiation field

where Dext are the electric induction components of the field feat , corresponding
to the actual position of the particle and calculated in the particle rest frame.
This is due to the fact that feat is a smooth field in the neighbourhood of the
particle trajectory. Therefore, αtotal  and βtotal =β+ (DeXtxi)/r, where α and

denote the corresponding quantities for the radiation field J.
We see that the dynamical equations for the field f are the same as in

the one-particle problem. The influence of the external field is manifested in the
non-homogeneous boundary condition (33), which now replaces the homogeneous
condition (12).

The right hand side of (33) can be written explicitly in terms of the lab-
oratory-frame components Ei(t, q) and B' (l, q) of the external field if we know
explicitly the Poincaré transformation relating the laboratory frame with the rest
frame.

7. Radiative friction as a result of "fine tuning" of the field

In the present section we will describe a particular class of exact solutions
of our theory. Each solution of this class can be obtained by solving a specific
ordinary differential equation for the trajectory, with the additional term contain-
ing third-order derivatives of the particle position. There is a one-parameter class
of such "radiative" terms and Dirac's term proposed in Ref. [2] corresponds to a
specific choice of this parameter. Another possibility could be e.g. an "anti-Dirac"
term or any convex combination of these two. Some of the solutions obtained this
way realize Dirac's idea of "radiative friction". Our theory is symmetric with re-
spect to time reversal and, therefore, there are also "self-accelerating" solutions
obtained this way. Also solutions without any friction or self-acceleration can be
obtained via a similar method.

The physical importance of all these solutions is very limited, because each
of them corresponds to a very specific choice of initial data for the field. To
maintain specific, purely mechanical behaviour of the particle (e.g. friction or
self-acceleration) the field on the entire Cauchy surface E has to be chosen in a
way perfectly tuned to the prescribed shape of the particle trajectory. In most
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cases, such a "fine tuning" needs an infinite amount of "infra-red" field energy,
since the field initial data do not fall off sufficiently fast at infinity. Generic initial
data do not satisfy this "fine tuning" condition and, therefore, do not admit this
method of solution.

There are, however, physical situations in which solutions obtained via Dirac's
method are physically meaningful. Such situations correspond to trajectories which
are asymptotically free for t —> —oo. If the external field feXt admits such a tra-
jectory for a test particle, then there is a preferable choice of the initial data
for the radiation field f at t --> —oo, namely the boosted Coulomb field sur-
rounding the uniformly moving particle. As we shall see in the sequel, the ex-
act solution of our theory with such initial data can be obtained by solving the
Lorentz—Dirac equation for the trajectory and taking as the radiation field f the re-
tarded Lienard—Wiechert solution corresponding to such a trajectory. This method
fails in case of closed trajectories (e.g. for the Kepler problem), when there is no
natural decomposition of the electromagnetic field into "incoming" and "retarded"
fields. Here, the choice of the time-arrow (e.g. friction or self-acceleration) corre-
sponds to an arbitrary choice of the fine-tuned, infra-red-divergent initial data.
Meaningful physical situations correspond to a local, non-linear interaction of par-
ticles and fields and cannot be classified either as an example of the radiative
friction or of the radiative acceleration of the particles. To obtain them we need
to solve our system of genuine partial differential equations, which does not reduce
to any system of ordinary differential equations.

The method we are going to describe is based on the observation that for
the retarded field Dret the expansion (10) assumes the following form:

(this formula can be easily obtained from the formula (6-62) in Rohrlich's book
[2]). A similar formula for the advanced field differs only by the sign of the last
term representing the dipole part of ,Q

The last two terms in both formulae give the total value of β. The first of the
two represents the non-vanishing quadrupole part of β (its existence proves that
the value D(0) of the non-singular part cannot be consistently defined). Equa-
tion (33) implies that the retarded field satisfies the equations of our theory if
and only if the trajectory satisfies the following third-order ordinary differential
equation:

The above equation has been written with respect to the particle rest frame and
in terms of the 3-dimensional objects α and ά. It is obviously equivalent to the
Lorentz—Dirac equation written in the 4-dimensional notation
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(with respect to the corresponding formula in Rohrlich's book there is an additional
factor 47 due to the fact that we use Heaviside-Lorentz system of units). Finding a
trajectory, which satisfies this equation and calculating the corresponding retarded
field we find an exact solution of our theory. Similarly, we may use advanced fields.
Due to equation (35) the corresponding equation for the trajectory will differ from
the above one by the sign of the last term.

A more general "Ansatz" is a combination of advanced and retarded solutions

where λ is a real parameter. The field provides an exact solution of our theory ii
and only if the trajectory satisfies the "Lorentz-Dirac type" equation

Dirac`s case λ = 1 corresponds to the retarded fields, the "anti-Dirac" case a = - 1

— to advanced fields. The specific case λ = 0 corresponds to the pure Lorentz
equation with external forces

The above method is useless if the trajectory is bounded, because then the
retarded and advanced fields behave like 1/r for r --> oo and the field energy,
necessary to maintain such a behaviour of the particle, is infinite.

We stress that the Lorentz-Dirac equation describes only one possible be-
haviour of the particle interacting with the field, corresponding to a specific choice
of the initial data. We conclude that it does not describe a fundamental law of
nature but only a special family of solutions of the complete theory described in
the present paper.

We stress also that there is even no universal choice of the sign of the pa-
rameter λ in Eq. (39), which would always correspond to friction rather than
to self-acceleration. The reader may easily check that for the free particle (i.e.

fext =0) positive a leads to self-acceleration, whereas for the Kepler problem they
lead to radiative friction. Of course, the modulus of λ is also arbitrary (λ = 5 is
as legitimate as Dirac's λ = 1).

But the main drawback of the Lorentz-Dirac theory consists in the contra-
diction between the fundamental role of the Lorentz force and the fact that there
is no way to define it consistently. This paradox may be avoided only if one treats
the interaction between particles and fields as a problem with moving boundary.
Here, the notion of the Lorentz force is meaningful for test particles only.
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