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The Vlasov—Poisson equation, which is an infinite dimensional non-
canonical Hamiltonian system, is linearized about a stable homogeneous
equilibrium. Canonical variables for the resulting linear system are obtained.
A coordinate transformation is introduced that brings the system, which pos-
sesses a continuous spectrum, into the action-angle form where the linearized
energy is diagonal.
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1. Introduction

It is well-known that the Vlasov equation possesses an infinite dimensional
Hamiltonian structure [1-4]. An interesting feature of this structure is that the
natural variable, the phase space density, constitutes noncanonical coordinates,
and as a result the Poisson bracket has a noncanonical form. A feature of this
noncanonical form is that the Poisson bracket contains some of the nonlinearity of
the theory, a feature that changes the usual procedure for linearization. One must
expand both the bracket and the Hamiltonian. The resulting system is an infinite
dimensional linear Hamiltonian system — one that still possesses a noncanonical
form. Recently [5], motivated by Van Kampen's solution [6], it was shown how to
transform this linear system into canonical action-angle coordinates, coordinates in
which the Hamiltonian is diagonal. This is an infinite dimensional analogue of the
elementary transformation to normal coordinates in finite dimensional oscillator
systems. The analogue is not straightforward since the Vlasov-Poisson system has
a continuous spectrum.

The purpose of the present paper is to present a significantly simplified
method for performing the calculations of Ref. [5]. In Sec. 2 we briefly review
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the noncanonical Hamiltonian structure of the Vlasov—Poisson system and its lin-
earization about a stable homogeneous equilibrium. In Sec. 3 a family of integral
transforms is presented and essential identities are proved. The results of this
section allow the simplifications in the calculation. In Sec. 4 we canonize and di-
agonalize. We conclude with Sec. 5.

2. Noncanonical Hamiltonian structure of Vlasov—Poisson theory

The Vlasov-Poisson equation for a phase space distribution function
f (r, v; t) for electrons is

where N is a fixed ion background density and the square brackets emphasize the
fact that, through (2), E is a functional of f.

This is an infinite dimensional Hamiltonian system or field theory, but be-
cause the distribution function does not constitute canonically conjugate variables,
the Poisson bracket is of the following noncanonical form [2]:

where F and G are arbitrary functionals, [ , ] is the ordinary Poisson bracket

and δF/δ f is the functional derivative. In terms of (3) the Vlasov equation is
compactly written as

where the Hamiltonian H is the total enrgy functional.

Two features of the bracket, (3), warrant mention: first, the form is obviously
not canonical (note e.g. it is an explicit function of f) and second, the bracket is
degenerate in the sense that

where C is any function. Because of this degen acy the bracket can only generate
dynamics in constraint "surfaces" (sometimes called mplectic leaves) determined
by the constants C. For details we refer the reader to Refs. [7-11].
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We now linearize (1) about an equilibrium f(°) that only depends on v and
take for our spatial domain a periodic box of volume V. We are interested in
electrostatic perturbations and thus only consider perturbations that have spatial
variations in a single direction, x say. The neutralizing background results in no
equilibrium field so the linearized Vlasov eauation becomes

where E(l) is determined by the linearized Poisson equation

An expression for the energy of the linear perturbation was obtained by
Kruskal and Oberman [12],

This result is the exact energy for the linearized equations. The Hamiltonian de-
scription of the linearized dynamics of interest here is obtained by expanding
both the above noncanonical Poisson bracket and the Hamiltonian. Assuming
f = f(°) (v) + f( 1 ) and expanding to first order yields the linearized bracket

in terms of which the linearized Vlasov—Poisson equation can be concisely written
as

It is a simple matter to show that (12) satisfies the Jacobi identity.

3. A family of integral transforms

Below we discuss some properties of Hilbert transforms, which we then use
to define the transformation to action-angle variables.

3.1. Review of Hilbert transforms

The theory of Hilbert transforms relies heavily on the notion of the Hölder
continuity. A function φ  is said to satisfy the Hölder condition of order α if

where A > O and O < a < 1. If in addition to satisfying the Hölder condition, φ
has a limit, ø(oo), as |x| —> oo and

where A' > 0 and μ > 0, then the Hilbert transform of φ is guaranteed to exist and
satisfies (14) and (15) with the same values of a and μ [13].The Hilbert transform
is defined by
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where P denotes the Cauchy principal value. We will state, without proof, several
properties of the Hilbert transform that will be used in the following calculations
[14, 15].

• The inverse transform exists and is given by

• The Hilbert transform has a convolution theorem

• A generalization of Parseval's formula exists

The existence of the integrals in (19) and (20) is not guaranteed by (14) and
(15) and so must be checked separately.

• Given a function a, which has a Hilbert transform, there exists a function,
F(z), analytic in the upper half plane, which has the limit α+iα as z
approaches the real axis from above. This function is unique up to an additive
constant, which can be taken to be the value of the function at infinity.

This last point is of particular importance in that it allows us to compute some
otherwise difficult Hilbert transforms. For example, consider functions α and β
that satisfy (14) and (15), and are related by

Then β+ iα  is is the limiting value, as z approaches the real axis from above, of the
function
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3.2. Van Kampen modes and integral transforms

Now we consider a family of integral transformations that are inspired by the
Van Kampen mode solution of the linearized Vlasov—Poisson equation [6]. This
will ultimately be used to transform the Vlasov—Poisson bracket into canonical
action-angle form. Define

Taking α = εI and β = εR, we see that Gis a Van Kampen mode and the condition
(21) is clearly satisfied. We can think of the transform being parameterized by a, as
each function a yields a different transform. We will say more about the structure
of G below.

Using the convolution theorem, we can rewrite (28) as

Here x and ζ have the same definitions as above. The inverse exists provided that
the condition α 2 + β2 # 0 applies in the upper half plane, in addition to on the
real axis. Observe that G and G belong to the same family of transforms.

Now consider the chain rule relating functional derivatives with respect to
to those with respect to ψ, where ψ  = G[φ]. Let F be a functional of φ and

consider its variation

Since the relationship between ¢ and ψ  is linear,

which can be used in the expression for δF to obtain

where G1 is defined by
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Comparing (34) with (36) gives

Equations (38) and (39) imply Gt  = Gt.
The operator G can be determined from the definition (37), namely

There are many identities involving G and Gt that can be proved. Below we
give three identities that will be required subsequently for the transformation to
diagonal form

One can see that the second identity follows from the first through the substitution

The first identity is proved upon substitution of the explicit expressions for Gt  [φ]
and Gt[ψ], viz.

First consider the term that contains two Hilbert transforms,
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Using (48), the right hand side of (47) becomes

and from the definitions of x and  ζ we see that ax = -βζ ; whence, the second
integral in (49) becomes

The proof of the third identity proceeds in a similar manner but requires an
additional property of the Hilbert transform, namely

3.3. Group properly of G

The family of transforms g is in fact a family of infinite dimensional linear
coordinate changes on function space. Here we describe its group composition law.
We adopt a slightly different notation here and denote G  by

The composition of two such transforms can be written out explicitly as follows:

This is the group parameter composition rule, which makes the expression for G
clear, since

The restriction β + iα # 0 for all x guarantees the existence of the inverse group
element. Below we will see that the elements of this group are in essence linear
infinite dimensional canonical transformations.

4. Canonization and diagonalization

The first step in making the transformation to action-angle variables is to
decompose f( 1) into its Fourier modes, i.e.
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where

Any functional, F, of f(1) can be thought of as a functional of the Fourier ampli-
tudes and the chain rule can be used to relate functional derivatives with respect
to f(1) to those with respect to fk,

From (57) we have

which gives

Using (59) in the expression for the linearized bracket yields

The above bracket is quite close to canonical form. A simple scaling produces this
end; in particular, upon letting qk = (m[V/4ik f (°)') fk and pk = f_k we obtain

Note, having assumed that the equilibrium is stable there is no problem dividing
by f(0)'.

Now we use the linear transformation G to change variables

For the moment a and /f are left unspecified, but we allow for the possibility that
they depend on k. From (39)

which can be used to write the linearized bracket, (60), in terms of ξk:

Clearly (64) is not in canonical form, however, with appropriate choices for a and
13 it can be made so. The first of the three identities, (43) of the previous section
motivates the choices: if α oc f(0)', then
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which is precisely what is needed. It is convenient to set

where εI is the imaginary part of the plasma dielectric function. Choosing β°° = 1
gives

where εR is the real part of the plasma dielectric function. With these choices for
a and β

and the expression for the bracket becomes

The condition on α and β for the existence of G restricts us to considering only
stable plasmas that do not support neutral modes, which is consistent with our
choice (in this paper) of strictly monotonic equilibria.

Using (45), it is a straightforward matter to write the energy in term of the
variables ξk. Doing so gives the following form:

which is seen to be diagonal.
The time dependence of ξk is determined by the bracket, (69), and the energy,

(70):

Note that this is the same time dependence that was assumed by Van Kampen,
but here follows from the diagonalization.

To obtain the physical interpretation of ξk , we consider Poisson's equation

Thus the ξk (u) are the Fourier amplitudes of the electric field corresponding to
frequency ω = ku, where k and u are independent.

Note that δ2F is not equal to the well-known expression for energy stored
in a dielectric [16-18],
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where ω and k are related through the dispersion relation ε(k, ω/k) = O. The
expressions differ because plasmas, unlike dielectrics, possess resonant particles
(see Ref. [5] for further details).

We can now transform to action-angle variables Jµ and θμ, by setting

Here ωµ = ku and p = (k, u). Thus the energy becomes

which is the expected action-angle form for an infinite dimensional Hamiltonian
system with a continuous spectrum.

Through the chain rule the Poisson bracket obtains the canonical form

5. Conclusion

Above, we began with the noncanonical Hamiltonian form for the Vlasov-
Poisson system, which was linearized about a stable equilibrium state. The non-
canonical linear system was then scaled to obtain canonical form, however in
these coordinates the Hamiltonian was not diagonal. Then, an infinite dimen-
sional canonical transformation was effected to bring the system into action-angle
coordinates, where the Hamiltonian is diagonal.

It is evident that the techniques of this paper are quite general and can apply
to a variety of systems. In particular for transverse waves about an homogeneous
Vlasov—Maxwell equilibrium, we [19] have obtained the following result:

with obvious definitions of symbols. This result is analogous to that of (70). The
details of this calculation will be presented elsewhere. Since quantum mechanics
in the Weyl—Wigner formalism [20] possesses a bracket of a form similar to that
for the Vlasov—Poisson theory, it is likely that the techniques of this paper are
applicable.
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