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The theory of the 2S½-2P½ Lamb shift of hydrogen is discussed and
compared to experiment. Recent corrections from radiative recoil of order
a(Za)5m2/M and pure recoil of order (Za)6m2/M are reviewed. Contri-
butions of order a2 (Za)5m have been calculated from certain classes of
diagrams. These are described while other as yet uncalculated terms are
mentioned. The largest error in the theory is the uncertain measured value
of the proton electromagnetic radius.
PACS numbers: 12.20.Ds, 12.20.Fv, 11.10.St

1. Introduction

The Lamb shift of hydrogen has provided a test of quantum electrodynamics
and of bound state methods in quantum field theory. The original measurement
of the 2S. —2P1/2 splitting carried out in 1947 by Lamb and Retherford [1], resulted
in a separation of approximately 1000 MHz.

Experimental results were presented at the Conference on the Foundations
of Quantum Mechanics held at Shelter Island on June 1-3, 1947. Shortly after
that conference Hans Bethe proposed an explanation for the Lamb shift in which
the energy separation was based on the interaction of the bound electron with
the quantized radiation field [2]. Schwinger and Weisskopf [3] and earlier Oppen-
heimer [4] had already made the suggestion that the electron should be coupled
to this field. However, they found that this coupling produced a linearly divergent
energy shift. Bethe was able to show that this divergence could be absorbed in an
electromagnetic mass shift and that the residual energy shift, while still logarith-
mically divergent, gave approximately the correct result if the divergence was cut
off at the electron mass.

The important research of Lamb and Bethe was followed by more than four
decades of experimental and theoretical refinement. Currently, the experimental
precision is approaching 1 part per million (about 1 kHz) for the 2S-2P separation
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of hydrogen [5, 6]. There has been extensive research on high Z Lamb shifts [7],
as well as on the bound states of He+ [8]. These also give high precision results.
We will not review these areas since this paper is devoted primarily to hydrogen.

In Sec. 2 we present the most recent theoretical results for the Lamb shift
along with a discussion of the various components of the formula. In Sec. 3 we
discuss experimental results and compare them to the theory. In Secs. 4, 5, and 6,
we describe work on radiative recoil corrections of order a(Za)5 m2 /M, pure recoil
of order (Za) 6m2/M, and nonrecoil of order a2 (Za)5 m. In the concluding Sec. 7,
we discuss remaining uncertainties, including uncalculated parts of the theory.

2. Theoretical expression for the Lamb shift (2.S½-2P½)

At present the expression for the Lamb shift is given below with numerical
contribution of each piece in megahertz (MHz) given to the right:

This expression has many contributing terms. The terms which have been
computed numerically introduce negligible errors (less than 1 kHz). We will now de-
scribe the different pieces. The leading term, of order a(Za)4 m, gives 1050.56 MHz
[9]. The bulk of this arises from the leading piece of the bound electron self-energy
while part comes from vacuum polarization. The expression given includes reduced
mass corrections. To properly obtain these mass corrections it is useful to include
the proton kinetic energy and the transverse photon exchange potential in the
initial Dirac equation. A systematic analysis of these mass corrections is given in
Ref. [10].

The leading relativistic corrections of order a(Za)5 m have been evaluated by
many authors [11]. It was originally expected that these terms would be modified
by the factor (µ/m)3 which occurs whenever a result is proportional to the square
of the wave function at the origin. However, as shown in Ref. [10], this factor
does not always appear since there are radiative recoil contributions which are
also present. Nevertheless, the leading relativistic correction, including a factor
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of (μ/m)3 which gives part of the mass correction, results in the contribution
7.129 MHz.

Next there are yet smaller relativistic corrections of α(Zα)6m which are
multiplied by factors of ln2(Zα)-2 , ln(Zα) -2 , and 1. The coefficients of the loga-
rithmic pieces are known analytically [12] while the nonlogarithmic piece has been
estimated and also later calculated numerically [13]. The numerical result quoted
above is given by Wijngaarden et al. [14]. Recently there also has been a separate
calculation carried out by Pachucki [15]. Respective contributions of —0.246 MHz
and —0.169 MHz come from the logarithmic and nonlogarithmic pieces.

The contribution α2 (Zα)4 m gives 0.101 MHz and arises from contributions
to the slope of the Dirac form factor, as well as anomalous magnetic moment terms.
It also includes fourth order vacuum polarization on a single Coulomb line [16].

The terms which give 0.359 MHz are of order (Zα) 5 m2 /M and are of the
same order as reduced mass contributions to the leading radiative level shift [17].
These terms, known as pure recoil terms, have an entirely different origin. They
come from double Coulomb interactions (ladder plus crossed graphs) not already
contained in the second Born approximation of the Coulomb interaction, from dou-
ble transverse photon exchange, and from the effects of single transverse exchange
not already present in the approximation based on use of the Breit potential.

Next there is the very important contribution 0.145 MHz or 0.127 MHz
which comes from the deviation of the proton from a point particle [18]. The
modification of the Coulomb potential due to the finite extension of the proton
perturbs the S state but not P state energy since the S state has a finite wave
function near the origin, while the P state does not. We have quoted results based
on two measurements of the proton radius [19, 20]. The uncertainty in the proton
radius produces the largest known source of error for the hydrogen Lamb shift.
We will return to further discuss this in Sec. 7.

The quadratic recoil correction which follows gives —0.0022 MHz. This was
worked out many years ago [21] and discussed more recently [22]. It arises from
the Dirac equation with a potential which includes both the Coulomb and Breit
interactions.

The next three corrections respectively give radiative recoil [10], additional
pure recoil [23, 24], and higher order radiative effects which involve double Coulomb
exchange [25-27]. The first two terms above give —0.0025 MHz and 0.0032 MHz,
respectively while the last is incomplete but gives 0.0057 MHz from the diagrams
calculated to date. A discussion of this work will be presented in Secs. 4, 5, and 6.

3. Experimental results and comparison with theory

The most recent experimental results for the 2S½— 2P½ Lamb shift are the
following:

1057.845(9) MHz (Lundeen and Pipkin [5]) and

1057.851(2) MHz (Palchikov, Sokolov, and Yakovlev [6]).

These experiments were an improvement of early work. Lundeen and Pipkin
passed a beam of 2S atoms through an r f field. In a mixing region there was
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a static electric field which mixed 2S and 2P states. This mixing then caused
Lyman a-radiation to be emitted. If the r f field is resonant with 2P½ , transitions
out of 2S½ occur, thus depleting the 2S beam and consequently the subsequent

α-radiation. In this experiment Lundeen and Pipkin use two spatially separated
r f fields to quench the 2S state. They found that this approach could be used to
narrow significantly the line width.

Palchikov, Sokolov, and Yakovlev used a somewhat different approach. Atoms
in the 2S½ state(F =0) passed through two short regions separated byL.In these
regions there was a longitudinal electric field. Radiation from atoms in 2P½ state
was detected by a photodetector when they exit the second electric field region.
The signal detected is the difference of the number of atoms in the 2P1 state
when the E field was reversed in the second region. The signal was measured as
a function of L and a fit was made to determine the Lamb shift as a function of
beam velocity. A separate experiment was used to determine the beam velocity by
observing the decay of the Lyman a-radiation after the metastable atoms passed
through the first electric field region. This was essentially a measurement of the
Lamb shift in terms of the lifetime of the 2P½, state.

As mentioned previously, the largest uncertainty in the theory of the Lamb
shift is due to our lack of knowledge of the proton radius. Prior to the experiment
reported in Ref. [19] the value used for the radius was 0.805 fm [20]. This older
value gives a smaller result for the Lamb shift theory by 18 kHz, providing better
agreement with experiment. In recent years there has been a number of theoretical
developments which have altered the theory. There was a 4 kHz increase due to a
more precise numerical calculation of the α (Za)6m piece [14], a —2.2 kHz change
due to quadratic recoil [21, 22], a —2.5 kHz effect from radiative recoil [10], a
3.2 kHz contribution from pure recoil [23, 24], and thus far a 5.3 kHz addition
from two-loop nonrecoil graphs [25, 26, 27]. These changes currently add up to
an 8.2 kHz increase. At present the theoretical value of 1057.883 MHz disagrees
with experiment. However, we wish to stress that the theory is incomplete since
additional α2(Za)5m must be calculated. In addition the error arising from the
uncertain value of the proton radius is quite large.

4. Radiative recoil corrections of order α(Zα)5 m2/M

Many years ago Grotch and Yennie [28] proposed and solved a modified Dirac
equation for hydrogen

with H0=En — V — Mand Π= p—eA,where V is the Coulomb potential
and —e • A is the convection interaction due to the motion of the nucleus. The
nuclear kinetic energy is also included in the Hamiltonian. When M approaches
infinity we obtain the static limit.
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The leading contribution to the Lamb shift, which arises from the electron
self-energy in an external Coulomb field is given by the expression

and is graphically depicted by Fig. 1. When recoil is ignored H0 = E n — V and
π  = p. A part of the recoil corrections may be calculated by using Eq. (3) above

Fig. 1. Electron self-energy in a Coulomb field.

but with Πµ given by the mass-corrected expression. We call this approach the
external field approximation (EFA). Figure 1 now contains on the external and
internal lines ladder Coulomb and convection interactions. In addition, the non-
relativistic nuclear kinetic energy is included. The Erickson—Yennie [11] approach
to the evaluation of ΔEn was carried out in Ref. [10] with the following results:

where µr = mM/(m + M) is the reduced mass, C1½ = —1/3, C1 4 = 1/6 and

Ac. is the average excitation energy. The second term of ΔEn5) provides a cor-
rection beyond reduced mass modifications presented earlier in the literature. It
contributes a —2 kHz correction to the n = 2 hydrogen Lamb shift.

The approach based on Eq. (4) with state vectors I n) which satisfy Eq. (2) is
systematic but Eq. (4) is an approximation which excludes those Feynman graphs
which do not follow from this ladder approach. To obtain Eq. (4) two approxi-
mations were needed. The first was to discard all nonladder graphs. The second
approximation involved carrying out four-dimensional loop integrals by retaining
only the positive energy proton pole contribution. The reader is referred to Ref.
[10] for a more complete discussion of the procedure of obtaining the EFA.
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Fig. 2. Corrections to EFA. Two-photon exchange self-energy (a), vertex (b), and the
spanning photons (c) diagrams. The "dot" on the proton propagator in the ladder graphs
implies the subtraction of EFA, while the "cross" represents the mass renormalization.

In Ref. [10] corrections to the EFA arise from the Feynman diagrams il-
lustrated in Fig. 2. These diagrams are complicated but they have been studied
in detail and result in an additional level shift correction for the n = 2 state of
hydrogen of

which is about —0.5 kHz. This result was obtained by numerical integration, carried
out with the program VEGAS. Since this contribution is small (less than 1 kHz)
we can conclude that the external field approximation is quite good and that the
corrections to it, as represented by the diagrams of Fig. 2, are not essential at this
time.

5. (Za)6m2/M recoil corrections

Pure recoil corrections all originate from multiple interactions between the
electron and the proton. There are numerous classes of diagrams which lead to
these terms. The terms which contribute will come from double Coulomb (dC),
triple Coulomb interactions (tC), double transverse (dT), double transverse to-
gether with single Coulomb (dT-1C), and single transverse (sT). To keep track
of these terms we will use for the energy shifts δEa (6b), where the superscript (6)
denotes that these are (Za)6 terms and the subscripts ab characterize the origin
of the terms.

5.1. Double Coulomb

Double Coulomb corrections are illustrated in Fig. 3. These graphs contain a
leading recoil term of order (Za) 5 m2 /M which is calculated from δVdC, given by
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by setting the external momenta p 1and p3to zero in Eq. (8), as well as in the
lower components of the external Dirac wave functions. When corrections due to
the finiteness of external momenta are considered a correction δE 64 is obtained,

Fig. 3. Coulomb-Coulomb graphs.

5.2. Triple Coulomb

These terms are contained in the graphs of Fig. 4 and can be evaluated
analytically (see Eq. (4.7) of Ref. [24]) by setting external momenta to zero in the

graphs. It is straightforward to obtain

which is identical to the double Coulomb piece of Eq. (9).

5.3. Double transverse (seagull)

The double transverse or "seagull" correction is rather subtle and conse-
quently we will provide greater detail for this part of the calculation (see Fig. 5).
The leading terms were calculated many years ago from the expression

The potential can then be expressed in terms of pieces which contribute to
low-order and high-order contributions. Thus we find δVdT = δV Tl +δT +W A,
where
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Fig. 4. Triple Coulomb diagrams.

Fig. 5. Seagull correction.

These expressions must now be used with the wave functions φ (p1) and φ(p3) and
integration over all momenta must be carried out to the desired accuracy. We have
been able to implement this analytically and have found the following results for
S states:
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Thus for S states the double transverse correction is

while for P states the result is negligible.

5.4. Double transverse—single Coulomb

Here we evaluate the graphs shown in Fig. 6. In these diagrams a single
Coulomb line corrects the seagull graph. Note that the "dot" on the proton line
denotes the subtraction of those reducible graphs whose contributions are already
contained in Sec. 5.3. The presence of Coulomb wave functions implies an infi-
nite number of Coulomb ladders before and after the seagull interaction. Thus
the terms must be removed to avoid double counting. We have carried out the
calculation numerically. The contribution comes only from the graphs of Fig. 6c

Fig. 6. Diagrams with single Coulomb and a seagull.

and Fig. 6f, that is from the graphs in which the Coulomb line is between the
transverse photons. Analysis of other terms reveals a pairwise cancellation from
the proton line structure whenever the Coulomb interaction precedes or follows
both transverse photons. After numerical calculation we obtain
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5.5. Single transverse

The corrections from single transverse photons are quite complicated. Lower
order terms bring in a Bethe log which signals the presence of an arbitrary number
of Coulomb exchanges accompanying the single transverse exchange (See Fig. 7).
To obtain the recoil effects to order (Zα) 5 m2 /M it suffices to employ for ΔET the

Fig. 7. Transverse exchange with multiple Coulomb exchange.

expression

It is important, however, to realize that this approximation is based on old-fashioned
perturbation theory and moreover the intermediate states only include positive en-
ergy states. Thus we will need corrections from negative energy states. We return
to this later.

The expression (17) above readily yields (Zα) 5 m2 /M terms but also contains
a (Zα) 6 m2/M piece. We have handled this by writing

Ti and T2 terms will produce the (Za) 5 m2 /M piece while T02 will produce a higher
order correction. This higher order correction is easy to calculate and we obtain

Now let us turn to additional corrections which are not properly contained
in the single particle theory. There are two distinct single loop contribution to the
energy shift would be

contributions, the first coming from single loop Feynman diagrams containing one
Coulomb and one transverse (see Fig. 8), and the second coming from two-loop
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Fig. 8. Single Coulomb-single transverse graphs.

Fig. 9. Double Coulomb-single transverse graphs.

graphs with two Coulombs and one transverse (see Fig. 9). The expression for the
To obtain this expression we decomposed the electron propagator into positive and
negative energy terms and then carried out the part of the loop integral (f d 4 k)
by integrating over k0. The first term arises from a pole at k0 = k — iε and so
does the second. The third term comes from the negative energy electron pole
at k0 =piσ +Epi_k. We need to remove from the above expression those terms
which have already been calculated in the single particle theory approximation.
The entire approximation is given by (5.18) of Ref. [24] and the piece to be removed
is obtained by using the leading approximation to the nonrelativistic propagator.
Thus we subtract ΔE± , where
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We have numerically computed ΔEc_T — ΔE+ for S and P states. The P state
contributions are negligible and we obtain a result of 8.02 kHz for n = 2. The
bulk of this comes from the negative energy projection piece of Eq. (20) while
the remainder is the difference between the positive energy piece and ΔEA_ (its
approximation). A good portion of this correction can be extracted analytically
to produce ln(1/Zα). We present the result in this form and provide a correction
which is obtained numerically. Thus we have

Next we turn to the last contribution from Fig. 9 which involves a transverse
photon with two Coulomb interactions. A number of diagrams are already ac-
counted for and double counting must be avoided. Thus all diagrams in which
the transverse photon precedes or follows the Coulomb interactions must be dis-
carded. In addition, according to Sapirstein and Yennie [29] diagrams in which
the electron line has a transverse between two Coulombs are suppressed relative
to leading terms. Ultimately, after removing unimportant terms and setting the

Fig. 10. Contributing double Coulomb-single transverse graphs.

external momenta to zero, the contributions come only from Fig. 10 and we obtain
a manageable expression which we have integrated numerically. We find an n = 2
effect of —1.9 kHz. Thus we can write

This completes the contributions from a transverse photon to order (Zα) 6 m2/M.
The total result of this order is
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6. Corrections of order α 2 (Zα) 5 m

Corrections to the Lamb shift of order a2 (Za)5 m arise from six classes of
diagrams shown in the graphs of Figs. 11a—f. These graphs arise from a single skele-
ton diagram, Fig. 12, involving two Coulomb interactions. Thus far, results have
been obtained for Figs. 11a—d. We will remind the reader of these contributions
which have been published elsewhere [25-27].

Fig. 11. All gauge invariant sets of diagrams that generate corrections of order
a2(Za)5m to the Lamb shift.

Fig. 12. Skeleton graph.

The contribution from Fig. 11a comes from the several lowest order vacuum
polarization insertions on the skeleton graph. This produces the simple result

The integrations are straightforward to perform numerically and they yield the
result

Next consider the irreducible two-loop vacuum polarization pictured in r ig. 110.
Here the calculation leads to the expression
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where

with 12 (k) the two-loop polarization operator. This is given by

where Li(z) is the Euler dilogarithm (see e.g., Refs. [30], [31]).
The subtraction of I2(0) is necessary because without this we encounter

a low k divergence indicative of a contribution of lower order. This lower order
term was obtained many years ago [16] and must be removed. After this is done
the integration of Eq. (28) may readily be carried out numerically. The result
obtained is

A third correction, from Fig. 11c involves the presence of a vacuum polarization
inserted on the lowest order radiative electron factor analyzed in Ref. [10]. This
correction is

where I1 (k) is the lowest order vacuum polarization expression given earlier while
L(k) is the electron factor given in Ref. [10]

The various terms are defined in Ref. [10]. The integrations required are nontrivial
since we must eliminate low k singular behavior by means of analytic rather than
numerical cancellations. Thus the terms involving B2, B1, E0, and E1 , all of which
contain 1/k 2 behavior from D0, require special treatment. We have done this, as
reported in Ref. [10], and were then able to do the numerical integration. The
result then obtained from Eq. (32) is

To check our calculation, which was performed in the Fried—Yennie gauge, we also
calculated the electron factor in the Feynman gauge and repeated the calculation
of ΔE,, obtaining an exact confirmation of the previous result. We also checked
the asymptotic limits of L(k) and confirmed their agreement with accepted results.
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A fourth correction of order α2 (Zα) 5 m arises from the diagrams illustrated
in Fig. 11d. This set of graphs requires a vacuum polarization insertion on the
radiative photon and thus appears as a correction to the electron factor diagrams
studied in Ref. [10]. Unfortunately, the expression for L(k) was given in Ref. [10]
in the Fried—Yennie gauge and was infrared regularized by using off-shell electrons
rather than by introducing a photon mass λ. It would have been useful to have
the latter expression since the inclusion of vacuum polarization could readily be
accomplished through integration over a variable mass λ(v).

The approach we adopted was to recalculate the expression corresponding
to L(k) in the Feynman gauge of the radiative photon of mass λ(v) and then to
numerically integrate over v. This is reported in Ref. [27] where we find that

In this expression the photon mass λ is given by

The electron factor L(k, λ) is the Feynman gauge expression, which is given
by Eqs. (3, 4) of Ref. [27].

Once again we note that subtraction at zero momentum is carried out. This
renders the k integral infrared finite and removes a contribution of lower order.
The resulting expression may be integrated to obtain

The additional contributions from Figs. 11e,f have not been fully evaluated.
The first of these, (e), comes from light by light scattering while the second, (f),
arises from two radiative photons on the electron line. Work is now in progress on
these difficult terms.

7. Conclusions

Currently, the theoretical splitting of the 2S½ — 2P½ levels disagrees with the
experimental result. This is apparent from the results presented in Secs. 2 and 3.
It is likely that the theoretical expression is incomplete and that further research
must be carried out.

There are clearly uncalculated corrections of order α 2(Zα) 5 m which arise
from two classes of Feynman diagrams. The first class, shown in Fig. 11e, consists of
three-loop graphs which contain virtual light by light scattering. The second class,
illustrated schematically in Fig. 11f, contains all possible two-photon insertions on
the electron line. These are also three-loop graphs. These classes of graphs can be
evaluated by setting the external momenta to zero. Research on both of the above
sets of diagrams is now in progress. In addition, it is also necessary to calculate
any corrections of order α3(Zα)4 m which might arise from three photons on the
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electron line. These would come from the contribution to the slope of the Dirac
form factor resulting from three photon corrections to the vertex.

In the theoretical expression presented in Sec. 2 there is an important cor-
rection due to the radius of the proton. From a theorist's point of view this is
the simplest theoretical contribution to the Lamb shift. In effect the extension of
the proton shifts the S states but not the P states since the former states have a
finite wave function at the origin while the latter have a vanishing wave function.
The difficulty which arises is that the proton radius cannot be reliably calculated
theoretically and therefore the theory relies on an experimental determination of
this radius, which is defined as

where p(RN) is the nuclear charge density. For hydrogen p is the proton charge
density which is obtained from elastic electron proton scattering.

The two most credible values of this radius rp , 0.805 (11) fm [20] and 0.862
(12) fm [19], disagree with each other and produce an 18 kHz difference for the
hydrogen Lamb shift. The smaller value gives a result which is closer to experiment
than does the larger value. It might be argued that the larger value should be used.
The experiment is more recent and consequently the authors of Ref. [19] had the
benefit of prior knowledge and possible sources of error in preceding experiments.
The authors of Ref. [20] assumed a definite form for the charge distribution by
using specific form factors. In contrast to this, the authors of Ref. [19] did not
presume any form to determine the value of the radius. In either case, however, it
does appear that the slope of the form factor at low q 2 is measured and it is difficult
to assert with confidence that one result is more reliable than the other. Needless
to say, it would be highly desirable to have a new and more accurate determination
of the proton radius. This is clearly needed to reduce the uncertainty in the theory
of the hydrogen Lamb shift.
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