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Classical dynamics, reformulated in terms of its quantum envelope is
studied for the stationary states of the interacting system. The dynamical
variable of "elapsed time" plays a crucial role in this study. It is shown
that the perturbation series for the elapsed time can be summed in various
simple cases even when standard perturbation series diverge. For the special
class of systems where the interactions falł off sufficiently fast at infinity, one
could define "in" and "out" states; and consequently the wave matrices and
scattering matrices. The scattering phase shifts bear a simple relation to the
time delay in scattering.
PACS numbers: 03.20.+i, 46.10.+z

1. Introduction

Classical dynamics admits of an algebra of dynamical variables which are
realized as functions of canonical variables [1]. A Lie algebra is defined over these
by Poisson brackets [2]. The time evolution is governed by a Hamiltonian h(p, q;1)

with the equations of motion

For small times this operator may be integrated to obtain A(q(t), p(t);1) as a
function of q, p, t and the initial value A(q, p; t0). But in the limit of large times
there may not be a suitable limit to the quantity as a function of time. More
important is the fact that for many systems the behavior of the trajectory may be
unstable. In these cases of deterministic chaos, the trajectories lose any practical
significance and so we are led to use a phase space density description. In all these
cases, we take the canonical variable q, p to be real; and so are the energies real.

When interactions are considered, for unbounded motion we have scattering;
and in scattering, with initial uniform motion with varying impact parameters, the
trajectories appear to be diverging from the scattering center. This is reminiscent
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of the "he states of scattering in quantum theory. The Sommerfeld outgoing wave
boundary conditions [3] adapted to quantum theory correspond to the energy
acquiring an infinitesimal imaginary part [4]. Therefore use of complex energy
states in classical wave motion is quite natural and for generic classical mechanics
may not be irrelevant.

Another case where complex energies with finite imaginary parts are relevant
in quantum theory is when one studies metastable states with finite lifetimes. Such
resonances arise in classical mechanics also, and in particular in the context of the
Poincaré catastrophe of perturbation theory. In quantum theory, the dynamical

information of the lifetime of a metastable state (the width of a resonance) can be
converted into spectral information in a reformulation of quantum theory in terms
of generalized dual spaces. It is interesting to see if this can be done in classical
mechanics also.

Even more generally one can ask whether a formulation of scattering theory
can be carried out for classical mechanics. This would involve not only scattering
cross-sections but also the analogues of the Möller wave matrix with the unitarity
reflecting the completeness of the free states and of the interacting states; as well
as the notion of the isospectral comparison Hamiltonian.

But to bring about such a formulation we must realize classical mechanics
as a vector space theory [5]. This can be (and has been) done [7]. The state vectors
must realize the canonical variables q , p as well as the elementary vector fields

This is a system of 2N canonical degrees of freedom
considered as a quantum system called the quantum envelope of the classical system
[8]. The variables (—i aq, —ieP) are considered non-observable. The vector space

may be realized in the Schrödinger picture by L2(—oo, oo) functions of q, p with a
scalar product

Just as in quantum mechanics, it may be to our advantage to use nonnormalizable
ideał eigenvectors in certain cases. This is particularly true of states of definite
energy in the continuous spectrum when one encounters rigged spaces; but more
generally one deals with dual spaces [6].

Much of the physical interpretation of quantum mechanics include expec-
tation values and transition matrix elements, but many of the generic properties
depend on the spectral properties of the operators. In previous studies we have
shown that the notion of the spectrum (even of a self-adjoint operator) is not
unique and can be generalized when the vector space is "analytically continued".
This is not an inconvenience but an opportunity to encode additional dynamical
information in the modified spectrum. The first systematic study of such modified
spectra was undertaken in the study of all unitary representations of noncompact
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groups by the method of Master Analytic Representations [9]. Such modified spec-
tra reappeared in the study of solvable models containing metastable excitations
within the context of generalized quantum mechanics [10].

It is natural to enquire whether these results obtain in the vector space
treatment of classical mechanics of interacting particles. This is implemented in
this paper.

2. Classical dynamics embedded in a vector space

Define a vector space g{ over the field of complex numbers of complex valued
functions of a set of classical phase variables q, p with the L2 norm

A dense subset of vectors in ?i is realized by square integrable boundary values
of functions analytic in a domain D. They form a vector space G. The complex
conjugates 1P* (q, p) may be thought of as the boundary value of 0* (q* , p*) and
analytic in the same domain D and the same vector .space G. Within the domain
of analyticity

with q, p complex variables along contour {Γ1, T2}.
With the scalar product defined for normalizable vectors {Q, P, K, X) are

all hermitian. All observables, however, are functions only of {Q, P}.
The Hamiltonian evolution is given by the equation of motion

and is hermitian but is not an observable! The time evolution is given by the
Schrödinger picture equations of motion
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and hence

if .CH is not explicitly time dependent. Otherwise it is given by

where the + subscript refers to the time ordering of EH at different times in the
integral. Since ,CH is hermitian, the time-ordered exponential is unitary and the
norm of the state vector is preserved.

A classical system with N degrees of freedom has a quantum envelope with
2N canonical pairs; for the special case of one degree of freedom we see that the
quantum envelope has two degrees of freedom. Therefore there should be three
operators that commute with the Liouvillian. One of them is the Hamiltonian
which is an observable.

We may choose two other operators which commute with ,CH but we expect that
neither of them is observable.

As far as the observables are concerned, the phase of the"Schrödinger" wave
function ψ(q, p) is irrelevant [7]. Both (q, p) and exp [ iθ(q, p)]ψ(q, p) are equivalent
as far as observables are concerned since observables depend only on the density

However, for any state 0(q, p) there exists a phase θ(q, p) such that
exp[iθ(q, p)]ψ(q, p) is orthogonal to (q, p) provided ψ(q , p) is square integrable.

Hence, while the phase is unobservable, the states are different as far as the vector
spaces 7{, g are concerned. Under the gauge transformation

all the observables are gauge invariant but the Liouvillian and other operators that
depend on K and X undergo the gauge transformations [7, 8]

3. Stationary states of the quantum envelope

Let us now consider the stationary wave functions of the quantum envelope
of a free classical system with one degree of freedom with Hamiltonian

(We choose the mass to be unity and replace q by x.) The Hamiltonian operator
of the quantum envelope is
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with commuting operators (we replace q by x):

are canonical pairs of dynamical variables of the quantum envelope. The quantities
p2 /2 and x/p have the physical significance of energy and "elapsed time". Of the
canonical pairs, we can look for eigenfunctions for one each.

The states of the classical system with a constant energy (and even with
constant momentum) are not stationary since the position changes linearly with
time proportioned to the momentum! A stationary state should treat all positions
equally. So we go to the quantum envelope and construct the eigenstates of the
Liouvillian

We also note that the pseudodensity matrices formed from any bilinear in
the wave functions
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and is thus a simultaneous eigenfunction. For each energy we have a phase pro-
portional to it; and for each position we have a phase proportional to the elapsed
time r0. Since both these phases are not measurable, the density matrix may be
replaced by a phase density independent of position; that way alone we can assure
that it is stationary. Here we obtain a pure state realized by the vector IPA or !l .
For some purnoses it is more appronriate to consider an eigenstate of r and Hn

Here also, as far as the observables are concerned, this state is equivalent to a
space-independent phase space density.

If the origin is shifted by a, r0 (x, p) changes

which is also canonically conjugate to iph.
For a classical system with N degrees of freedom and a Hamiltonian

we could define N elapsed time variables

All these have the same value r0(x, p)

This equality is equivalent to the vanishing of the angular momentum

Not all these relations are independent here; the relations r = 1, for all values of
s implies the rest. If the origin is shifted

So the angular momenta are not zero but constants.
In this case, a proper choice of canonical pairs is
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4. Elapsed time of interacting systems

For an interacting system with one degree of freedom the classical
Hamiltonian is

The Hamiltonian operator for the quantum envelope is

Thus r(x, p) is, in fact, the elapsed time for motion under constant acceleration.
Similarly, for harmonic motion
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with

Thus r(x, p) is, in fact, the elapsed time for motion under constant acceleration.
Similarly, for harmonic motion

Note that G commutes with the delta function "normalization factor".
If we have more than one degree of freedom for the classical system,there are

degeneracies among the functions Ψλ ,E which are eigenfunctions of the Liouville
operator. They may be chosen from among the invariants of motion.

The states with ± denoting the sign of p for a given E,
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They are also complete

Hence, any wave function can be expanded in this ideal basis. Equally well, for
the case of V(x) = 0, we obtain Ψλ,E to be ideal orthonormal and complete.

Consider the integro-differential operator

While the free particle states are complete, for attractive potentials there are bound
states which do not obtain in this fashion. Such states may be obtained from among
the free particle solutions with real values of ro(x, p) = x/p and negative values
of E. The bound states of the Hamiltonian corresponding to negative values of

E constitute a continuum. Formally b (4p2 + 1E1) exp

with eigenvalue λ for L0 = ipa and energy —|E|. The transformed solution will
be
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with both x,p being real.
For the class of Hamiltonians with a local potential

the elapsed time r(x, p) can be defined by the integral

with p being replaced after the integration by H(x, p); or equally well left un-
changed, it being understood that the expression is valid for the specific total
energy p. We verify that r(x,p) reduces to x/p for V(x) = 0; and, that, in all
cases

Note that since H(x, p) has vanishing Poisson bracket with H(x, p), it does not
matter that we have incorporated the explicit p dependence of r(x, p) into its
dependence on p which may be treated as inert when taking the Poisson bracket
with H(x, p).

5. The wave operators in the quantum envelope

Given the exact solutions b for II, we could reinterpret the eigenvalue equa-
tions

Instead of writing U in the form of functions (or distributions) of x and p we may
reexpress them in a basis made up of the free system wave functions „e E(x, p)
which are also orthonormal and complete. In this basis G and H are diagonal with
eigenvalues a and E. We get
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Note that 1, E do not run over the same range as a, p. The latter contains negative
energy bound states; such states do not obtain for the free system. If we need full
correspondence, we must include these by augmenting the spectrum of H0 by such
negative energy states to obtain a comparison Hamiltonian Hc which would be
isospectral with H. When fl is also so augmented, we have the simpler set

This is in analogy with the situation in quantum theory where we use H or L
depending upon whether we work with state vectors or density matrices [6]. Here
we use both.

For most systems of interest it is not possible to carry out the computations
in closed form. But we could outline the calculations for the generic case.

The unitarity of fl may be verified by direct calculation from this explicit expres-
sion.

The generic expression for r(x, p) contains an integration constant. For sys-
tems like the harmonic oscillator the potential is present at arbitrary distances
and at all stages of motion; the interactions are persistent at all stages of motion;
the interactions are persistent as experienced by any trajectory; in fact there are
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no trajectories which go to infinity. On the other hand for potentials like e/(1-+ 2 )
the potential falls off at infinite distance and hence asymptotically the trajecto-
ries become flat. It is for such potentials that we can describe scattering. In the
next section we confine our attention exclusively to Hamiltonian which admit of
a scattering description.

For a system with Hamiltonian

with V(x) going to zero "sufficiently fast" when |x| goes to infinity. In these cases
we could describe trajectories which have a prescribed form "at infinity". For such
Hamiltonian there are two natural choices for the elapsed time variable

In both these integrations II is considered as a constant. Correspondingly there
are two wave functions

These are ideal orthogonal wave functions. The scalar product of the two is the
unitary matrix

The phase of S so constructed is the difference between the time elapsed for the
potential less the time elapsed for a free particle of the same energy; this is the
phase delay. Thus

where 26(p) is the phase delay. The phase delay is computed using H = μ and
covers the entire motion.

In this one-dimensional case the "scattering" is not in direction (since there
is only one direction!) but in the phase delay and the possibility of backscattering.
To get directional scattering we should proceed to discuss problems in more spatial
dimensions.
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6. Scattering in three dimensions

For three-dimensional motion x and p are 3-vectors and the interacting
Hamiltonian with central potentials is

In this case H, p and x x p = J are conserved. For the free-particle case

the elapsed time dynamical variable conjugate to the free Liouvillian

is given by

For the interacting Liouvillian

the conjugate elapsed time variable r(x,p) satisfies the integral equation

This equation can be solved by a perturbation series

We can choose the state as an (ideal) eigenfunction of the Hamiltonian H, the
Liouvillian .C , the angular momentum J and the maximal subset of the rotation
operators J where

Note that while J commutes with H and L its components do not commute; and

one may choose 33 and JZ as a complete commuting set. The angular momentum
J is normal to the plane containing the orbit and is independent of the coordinate
system defining the orbit; for example the two orbits in the same plane which are
obtained from each other by rotation around an axis normal to the plane through
the center of force have the same angular momentum. But a state with definite
value of Ja, JZ is defined by a superposition of such orbits for a fixed value of J,
with the third axis parallel to J. So we may choose as the constants of motion

These states may be obtained from the states with
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by forming a linear combination with respect to all possible directions of k and b
(or k and k x b) with weights appropriate to the rotation group.

But in this case it is better to use J and the angular directions θ , φ of the
trajectory to label the state since these are more directly related to the scattering
problem. The directions are continually changing under the interaction, but under
central forces the orbit is planar.

For Hamiltonians which are asymptotically free so that all the trajectories
become straight lines asymptotically the scattering angle can be defined by the
formula

These classical results can be computed in terms of the "in" and "out" wave
functions. The "in" functions are defined in terms of the elapsed time variable

Further, the wave function is defined with respect to the 1-axis along the direc-
tion of the incident (t —co) momentum and the angular momentum along the

β-axis. The state may then be labelled by the asymptotic incident momentumk
and impact parameter b. Similarly the "out" states may be labelled by the asymp-
totic outgoing momentum k' and impact parameter b'. They will be exponentially
dependent on rin(x, p) and

In these integrals the variable r' described the circuit oo to r0 and r0 to co; for
the excursion from oo to r0 we use Idr'l and for the excursion from r 0 to oo dr' is
positive.
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The correlation between the asymptotic incident momentum k and the asymp-
totic outgoing momentum k' is the cosine of the scattering angle 29.

As mentioned above O is a functional of V(r) and depends on E and J. The total
elapsed time for E, J is

This gives the relative time retardation as compared with a free particle with the
same energy and angular momentum. This time delay and the scattering angle are
the observables of the scattering process.

• 7. Concluding: remarks

In this paper we have continued the study of the quantum envelope of a clas-
sical system and found the complete set of eigenstates of the Lionville operator at
a fixed energy. In this construction we need to construct the dynamical variable of
elapsed time r(x , p) conjugate to the Hamiltonian. A perturbation theory to evalu-
ate r(x, p) is developed, it has been used to compute r(x, p) in various cases. In the
case of potentials such that for any unbounded trajectory r(x, p) asymptotically
approaches r0 (x, p) the free particle value we can define the phases in a unique
manner, appropriate for the "in" and "out" states. This construction enables us
to recognize the "Möller wave operator" for the quantum envelope and hence the
S-matrix. The formalism could be further developed to compute the scattering
cross-sections and compare it with the standard method of calculation.

The formalism developed here could be used to study resonances and the
Poincaré catastrophe. These are to form the subject of a later paper.
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