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Using the correlated pairs produced in spontaneous parametric down-
-conversion, one can extract quantum states effectively defined in a Hilbert
space of any dimension N. Furthermore, using just beam splitters and phase
shifters one can build any unitary operator in the laboratory. We briefly
discuss how this can be done, what kind of states could easily be produced
in the laboratory, and we will discuss one explicit result pertaining to photon
bunching in an N-dimensional Hilbert space.
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1. Introduction

Experiments on the foundation of quantum mechanics so far have usually
not made use of the full richness of Hilbert space in the sense that many of these
experiments can be understood as testing the predictions of quantum mechanics in
a Hilbert space of dimension 2 only. This holds for example for most of the neutron
interferometry experiments [1], for the Einstein-Podolsky-Rosen and Bell-type ex-
periments [2] or for experiments testing the spinor symmetry [3]. Recently, we have
found that using beam splitters one can realize any unitary operator in any Hilbert
space of finite dimension [4]. This observation makes a number of novel fundamen-
tal experiments possible, for example one can explicitly test the Kochen-Specker
paradox [5]. A direction of research, which offers itself immediately, is to use the
two-photon states emitted in parametric down-conversion as the radiation subject
to such unitary operators in a Iilbert space of higher dimension. In the present
paper, we will just give a brief overview of how we propose to produce states in
an N-dimensional Hilbert space and we will give one explicit example of photon
bunching if such states are subject to the general unitary operators.

In the process of down-conversion, a pump beam, typically of UV-energy, in-
teracts with some nonlinear crystal such that with a certain very small probability
a UV-photon can split into two photons conserving energy and momentum

ki + kg = ko, w1 + w2 = wo, (1)
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where ko (k1, k2) and wo (w1, w2) are the wave vector of the pump (down-converted
photons) inside the crystal and the frequency of the pump (down-converted pho-
tons) respectively. This implies that the frequencies and momenta of the individual
photons produced are undefined, they only have to attain values such as to add up
to obey Egs. (1). The conditions of Egs. (1) are commonly called phase-matching
conditions and one should note that they only hold for a sufliciently thick crystal,
a condition which we assume here. It then follows from Egs. (1) that photons of
a given wavelength are emitted into a cone whose axis is the pump beam. Fur-
thermore, to each cone with the frequency w; there is associated another cone
with frequency ws such that one photon of a pair produced is always found on
the one cone and the other photon on the other cone. In addition, the emission
directions of two photons belonging to a pair span a plane containing the pump
beam (Fig. 1).

Fig. 1. The principle of parametric down-conversion: a suitable non-linear crystal
(NLC) is pumped by a strong laser beam. It then emits photon pairs such that one
frequency is emitted into a cone around the pump. One given cone is always associated
to another cone, such that energy conservation holds. If one of the two photons is found
with, say, momentum k;, the other photon is found with momentum k.

It is clear that the state emitted by the nonlinear crystal is one of the rich-
est quantum mechanical entities accessible to direct coherent manipulation in the
laboratory. This is because this state (for a representation see [6]) exhibits entan-
glement both in energy and momentum and because both variables are continuous.
All existing experiments make use of only a small part of this rich state by selecting
either two or four beams or spatial modes out of the full radiation field generated.

In the next section we will discuss some of the new possibilities of selecting
an entangled two-photon state defined in a Hilbert space of higher dimension out of
the down-conversion field and of subjecting such a state to unitary transformations.

2. Multimode entanglement in the laboratory

There are many ways to extract a correlated two-photon field of a finite
number of modes from the radiation produced in down-conversion. Figure 2 gives
one such possibility, where for simplicity all modes are extracted from that single
cone for which the condition of degenerated down-conversion holds, i.e. w; = ws.
2N pinholes select the output modes |a), [b), |c) ... The emerging state may thus
be written as

12) = S {alB)+ 101+ () + ..+ la) + lble) +1)le) + -}, (2)
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Fig. 2. Using an aperture with suitable pinholes, one can select distinct modes out of
the full entangled two-photon state emitted. The figure shows the case of degenerate
down-conversion, where both cones collapse into one (w; = w»).

where, for example, the ket |a) describes the mode emerging into beam a. The
second group of terms (|b)]a), |d}|c}) . ..) arc necessary to ensure bosonic symmetry
for the whole state. In case we had chosen a source of feryico.«. these terms ob-
viously would have had a negative sign. It is evident that b; varying the number
of holes, one can vary the number of terms in the entangled state and thus the
dimension of the Hilbert space in which the emitted state is defined. We would
like to stress once more that the state of Eq. (2), while consisting in principle
of any number of modes, contains only two photons. One can then subsequently
subject these emerging modes to any apparatus representable by either a unitary
or a non-unitary operator and investigate the correlations of the finally emerging
radiation.

It has recently been shown [4] that it is possible in the laboratory by just
using beam-splitters and phase-shifters to realize experimentally any unitary op-
erator which does not change the number of photons. Without going into the
details of this constructive proof, we can therefore state that using standard opti-
cal equipment available with today’s technology, one can study all phenomena in
any finite-dimensional Iilbert space. In practice this can already be realized for
one-photon and two-photon states using parametric down-conversion.

An alternative possibility of realizing unitary operators in the laboratory
is the use of modern fibre optics technologies. There, it is possible by suitable
imaging optics to project just one given mode into a fibre and then to use proper
fibre couplers to, again, realize any unitary — or nonunitary for that matter —
operator. This technology appears to be less sensitive to external disturbances and
more flexible, and it is presently being pursued in our laboratory in Innsbruck.
It is particularly suitable for experiments over long distances as for example in
future tests of Einstein-Podolsky~Rosen correlations in a truly space-like separated
context.

3. Two particles in N beams

In this section we will briefly review the possible states of two particles
in N beams. For simplicity, again, each beam is considered to be consisting of
one mode only and, assuming that all modes have the same spin, we ignore any
explicit reference to the spin state. Let these corresponding states be |a), [b), |c) . ..
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Evidently, there are many different ways to distribute two particles over these N
states. The first obvious possibility is to have both particles in the same state.
This results in the two-particle states

la)la), [8)[6), le)ie), - - - 3)
There are clearly N such two-photon-one-beam states. Writing a product of kets
like |a)|b), we always imply that the first ket refers to particle 1 and the second
ket to particle 2. Evidently, the states of Eq. (3) are all bosonic, since they do
not change upon permutation of the two particles. Any superposition of these
states is also bosonic and thus they span an N-dimensional subspace of the total
two-particle space of dimension N2,

Further base states can be found by considering those cases where the two
particles are propagating in two different beams. These states have to be con-
structed out of a product of different modes. Clearly, a state like |a}[b) is illegal
since it obeys neither bosonic nor fermionic symmetry. Possible base states of
proper symmetry have therefore to be constructed as superpositions of such prod-
uct states. Such states are for example

1 1
? {la)6) + [B)|a)} , 7 {la)le) + le)la)} s
7 {lb)le) + [e)[B)}  ete. (4)

These states are symmetric upon interchange of the two particles and therefore
bosonic. There are N(N —1)/2 of these bosonic states. Their anti-symmetric coun-
terparts

1 1
—\{—5 {la)|6) — [b}]a)}} , 7 {la)lc) —Ie}la)},
7 {lb)le) — le)[8)}  ete. (5)

are fermionic. Of these again there are N(N — 1)/2 ones.

Altogether, we find that there are N + N(N —1)/2 = N(N + 1)/2 bosonic
states and N(N — 1)/2 fermionic states for two particles in N beams. We would
like to stress that in the present discussion we chose a state description rather than
a description via operators for the very reason that doing so one can cover both
fermions and bosons. Furthermore, we suggest that this provides an approach to
the phenomena expected which, even for photons, might lead to an intuitive picture
different from that implied by the standard machinery of second quantization
quantum optics. For the two-photon experiments considered here the conclusion
of the present paragraph is that two photons in N beams are effectively defined in
a Hilbert space of dimension N (N +1)/2. Superselection rules prohibit us to reach
the N(N — 1)/2-dimensional fermionic sector of the two-particle Hilbert space.

4. An example: two particles in two beams, the Bell states

From the discussion above it [ollows that we have the four following possible
base states:

o+ = %{Ia)lb) +Bla}, )= —}5 {la)16) — [6)la)} (©)
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[@a) = la)la),  |@s) = |B)[D).
The states |®,) and |$;) can be superposed to form the entangled states

1
o) = 7 {la)la) +10)IB)}, 7)) = % {la)la) — [b)[b)} - (7)

The states [@+), [#'~), |®+) and |$~) together form the so-called Bell basis. They
are a complete entangled basis of the two-particle two-dimensional Hilbert space.
As we show elsewhere [7], some interesting properties follow when these Bell states
are subject to unitary operators acting in thesec two-dimensional Hilbert spaces.
A possible experimental realization of such general unitary operators is simply
provided by using variable beam splitters with suitably adjustable phases. Without
going into the details of the derivation, we here quote some of the more interesting
results.

Firstly, the fermionic state |[¥~) is an eigenstate of any beam splitter oper-
ator. This is a consequence of superselection rules since now the fermionic sector
of the Hilbert space is one-dimensional only. Secondly, by choosing the right beam
splitter operator, it is possible to turn any of the other Bell states, i.e. the bosonic
ones, into each other. Exploiting this property, one can devise a simple system to
analyze which state is present. Such systems might also be called “Bell state an-
alyzers”, and they might be of relevance, considering experiments on information
processing using quantum means. Some particular example would cover quantum
teleportation or the fact that one can encode more than one bit into one photon
[8-10].

5. Two photons in a symmetric multiport

As a symmetric multiport, we define a device which has the following prop-
erty: if a single particle is incident onto any of its N input ports, it has the same
probability, i.e. P = 1/N to emerge at any given output port. This device is the
N-dimensional analog and generalization [11] of the standard fifty-fifty beam split-
ter. Of the many novel theoretical results [12] for such a symmietric multiport we
just mention one which has already found experimental verification. Consider the
case where in a multiport with N input ports we have a two-photon state incident
into just two input ports ¢ and j:

1 .. Ny
l¥) = 7 {1915} + )19} (8)
where |i) and |j) are modes incident at input ¢ and j respectively (Fig. 3). We now
calculate the probability to find both photons together in output k’. This follows
the transformations
|i)15) — akiok; k') [R'), . 9)

7)) — onjos| k') [E'), (10)
where e.g. ay; is the transition amplitude from input mode ¢ to output mode &'.
This is the (ij) matrix element of the multiport unitary operator U. Thus, the
case of finding both photons in output k is described by the state

[9) = o (anion; + anjans) ¥ ). 1y
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Tig. 3. In a symmetric multiport which can be represented by unitary matrix where
all elements have the same modulus, the amplitudes of two photons incident at the two
input ports 1, have an increased probability to arrive together at output port k’.

From the symmetry property of the multiport we obtain |ar;| = 1/VN and lastly
the final state becomes

) = Y2ae ) 1) - (12)
where ¢ is an arbitrary phase. Hence we obtain for the probability to find. both
photons together in one given output

p(both bosons in a given output) = % (13)

This probability is enhanced by a factor of 2 over a just statistical arrangement of
classical particles, because for classical particles the probability for each particle
to arrive at any output is 1/N and therefore the probability of both particles to
arrive at the same output is just the square of this probability, i.e.

p(two classical particles in a given output) = % (14)

Furthermore, it is easy to see that, had the input state been the fermionic state

1
= {|3)|7) = |5} 15
¥s) ﬁ{l MNa) — 1))} , | (15)
the probability of both fermions to arrive together in a given output would vanish
p(both fermions in a given output) =0 A ) (16)

as has to be expected from the Pauli exclusion principle.

We would like to stress that we have thus obtained two basic consequences
of quantum statistics via a simple interference argument. Finally, we mention that
for N = 3, i.e. the generalization of beam splitters with three input ports and three
output ports which we call a tritter [12], the property just mentioned has been
demonstrated recently in our laboratory [13]. For N = 2, i.e. the standard beam
splitter, we arrive at the special case that two bosons, for example photons, always
arrive together in an output port. This is a well-known property of beam splitters
[14] which has already found experimental verification [15]. So far, the spin has
entered our considerations only through the symmetry properties of the spatial
quantum state. This means that we implicitly assumed that both particles are in
the same spin state or, generally speaking, the spin state has even symmetry. In
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a forthcoming paper we will deal with the general case of any symmetry for both
the spin state and the spatial state.
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