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Entropy is a quantity characterizing the arrow of time in the evolution
of a physical system — in every irreversible process the entropy increases.
In elementary interactions such as relativistic collisions of two atomic nuclei
there is considerable particle production and hence entropy production. We
address here a number of questions which arise naturally in this context.
When and how is entropy produced in a quantum process, such as is a nu-
clear collision? How is the particle production related to entropy production?

How does one measure the entropy produced in the reaction? We also con-
sider certain fundamental approaches to the problem of entropy definition
in quantum physics.

PACS numbers: 25.75.+r, 05.30.Ch, 12.38.Mh

1. Entropy measurement

In ultra-high relativistic nuclear collisions performed at energies per nucleon
considerably greater than the nucleon rest mass the final state contains a large
amount of entropy related to the high particle multiplicity produced, as compared
to N–N reactions, and to their spectral distributions which are of thermal charac-
ter. But how does one determine the entropy produced in the elementary collision
reaction? We will present a practical procedure applicable to the environment of
relativistic heavy ion collisions and show how one can easily measure the entropy
produced. The idea here is to note that the entropy in a thermal gas of particles
is well defined, thus all we need to know is how many particles have truly par-
ticipated in the reaction and how many secondaries they produced. Clearly, the
procedure is strongly system and process dependent, and we will therefore pro-
vide some necessary details about the physics of the relativistic nuclear collisions.
Before proceeding let us quickly recall a few general notions which will allow to
pursue this discussion [1-4]:
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1) The objective to study complex relativistic interactions of largest nuclei
is the search for, and hopefully the discovery of the theoretically predicted new
phase of matter in which locally one has deconfinement of colored particles, the
so called quark-gluon plasma (QGP). QGP could be formed in such interactions
only as a transient state; with time the energy density in the interaction region will
decrease due to rapid cooling of this small "sun" and hadronization (conversion
into final state hadrons) will ensue — the hadronization of QGP generates certain
abundance of hadronic particles, and the transient presence of QGP can be recog-
nized by features such as are unusual abundances of certain particles. For example,
in the process of such data analysis we have found that the abundances of strange
particles display features which are most easily obtained from hadronizing QGP
fireball [1].

2) Aside of the u, d flavors present in projectile and target matter the dense
fireball will contain considerable abundance of strange particles, and in general
large amount of strangeness production was predicted and experimentally found.
The particular use we have for the strange particles, which are most effectively
produced in the deconfined QGP phase, is that they can serve to determine the
thermal properties of the source: temperature and chemical potentials.

3) In an ensemble of nuclear collisions characterized by a common trigger, the
impact parameter can be only determined on average, and the ensemble includes a
superposition of different impact parameters and hence different collision systems,
which however have common specific properties. Physical observables are therefore
best considered in terms that we can relate to the number of directly participating
nucleons. Thus the quantity for us to consider here is the entropy produced per
baryon participating in the reaction, SIB, which is also called specific entropy.

4) Often collisions are performed in a frame in which the target nucleus
is in the laboratory and hence the center of momentum (CM) frame is moving
with considerable rapidity — in the current CERN experiments involving sulphur
projectiles at 200 GeV A (per nucleon) the CM rapidity is 3 for the symmetric
collision and about 2.6 for highly asymmetric collisions, in which the effective
target consists of a cylinder of matter in the heavy target nucleus with which the
lighter projectile overlaps.

5) In order to study the spectral shape of the produced particles, remov-
ing the effects associated with the boost of particles from the CM frame  to the 
laboratory frame, one studies the particle yield as function of m| = √m2 p2.
(so called m| spectrum) either in a narrow region of rapidity, or with a near 4π
(global) coverage of all particles.

6) The m|-spectra of different particles are displaying features which suggest
strongly that their source is similar to a thermal heat bath: the spectral shape is
close to the Boltzmann exponential and the relative yields can be approximately
described by yields of particles in equilibrium (see below) in a state of matter
which appears to consist of a mixture of gases in which the species are the different
hadrons (pions, nucleons, their resonances, strange hadrons, etc.) — one speaks
therefore of a hadronic gas (HG) fireball.
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1.1. Charged particle multiplicities and entropy

Final entropy content of the reaction is most easily visible in the multiplicity
of produced particles. We note the relatively high final charged particle multi-
plicity arising in nuclear collisions: total charged particle multiplicities (excluding
target/projectile fragments) above 600 in the central region have been observed
by EMU05 (emulsion) experiment [5] in 200 GeV A S–Pb collisions, corresponding
to a total final particle multiplicity of up to 1000. This number does not include
non-participating target fragments which are produced in relatively large numbers
when the mass of the target considerably exceeds the mass of the projectile as
is here the case; these fragments appear primarily in the target frame and are
separated from the CM frame participants.

We will show that the ratio of net charge multiplicity to the total charged
multiplicity, considered as function of rapidity

as measured at central rapidity is directly related to the specific entropy S/B [1]
of the centrally produced highly excited dense matter. The relation between S/B
and DQ is insensitive to diverse uncertainties inherent in the problem, such as the
detailed flavor composition of the observed hadronic system. From diverse detailed
studies we conclude that DQ is an extraordinarily valuable experimental variable
from which the quantitative information about entropy can be gained, even in the
source of hadron radiation is a hadronizing quark–gluon plasma or some other
novel form of matter. We will briefly dwell on this matter.

First, we note that in the numerator of DQ the charge of particle pairs
produced cancels and it is effectively a measure of the baryon number. Thus in
the product DQ with S/B the baryon content cancels, and the result is roughly
the entropy content of the final state per final state pion. However, this quantity
is insensitive to the structure of the system. In order to be more specific we have
performed detailed calculations assuming the equations of state for the source as
given by the Hagedorn model of the H G state [7]. In this model one assumes
that the interactions between hadronic constituents are effectively described by
considering the diverse hadronic resonances formed in all reactions. Given the
equations of state, the value of DQ can be calculated. There are two steps in such
a calculation: first one determines the abundances of all hadronic particles as the
fireball dissociates for any set of thermal freeze-out parameters. Subsequently, all
hadron resonances are allowed to decay into final state stable particles. Similarly
we can compute the specific entropy for any set of thermal parameters.

In Fig. 1 we show the product DQ • (S/B) as a function of λq, the light
quark fugacity, for fixed strange quark fugacity λ s = 1 ± 0.05 (corresponding to
the observed range of values, and characteristic of a decomposing QGP state), with
T adjusted at each value of λq to ensure strangeness neutrality — suffice here to
say that the range of temperatures arising is compatible with the spectral shape of
transverse mass spectra. Another realistic parameter taken here is γs = 0.7, thus
the strange quark phase space occupancy is 70%. We observe that these curves
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Fig. 1. The product DQ • (S/B) as function of λq for fixed λs = 1, s - s = ). At each
point temperature is adjusted to assure strangeness conservation. The dot-dashed curve
was obtained with negligible strange particles content, γs ->0.

are pretty flat, and the strangeness neutral equilibrium HG fireball, allowing for
all cascading and decays, satisfies the relation (near λq =1.5, which applies to
current experiments with 200 GeV A sulphur projectiles at CERN)(S/B).DQ=3.0±0.2(2)

determining the entropy content of a central fireball in terms of the normalized
charge asymmetry DQ measured at central rapidity. We note in Fig. 1 a consider-
able insensitivity of the result to the presence of strange particles: the dash-dotted
curves show results obtained with very small fraction of strangeness being present,
but with temperature T still constrained by the requirement that for each value
of λq we have strangeness conservation at λ s = 1.

Experimentally [5] DQ = 0.085 ± 0.01 and hence we find that in collisions
of S nuclei with heavy targets at 200 GeV A the entropy per baryon generated in
the collision can be as large as 35.

2. Entropy and particle production

There are many workers today who investigate in a quantitative but phe-
nomenological manner the evolution of a primordial gluon-parton system or more
conventional, the evolution of a nucleon and pion gas into the final distributions
observed experimentally. Here one views the nuclear collision already as a series
of independent collision reactions of diverse (model oriented) projectile and target
constituents in which the kinetic energy of the collision is somehow converted into
the high particle multiplicity. In such an approach, the determination of (conven-
tionally defined) entropy could in principle be performed at any time during the
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evolution. As soon as one describes the time evolution as a cascade of individual
interactions, the reversibility is in principle lost.

We will here show that the period involving particle cascading does not gen-
erate much entropy, a finding which did surprise us. Most of entropy was already
present after brief initial moments and little entropy is generated while the parti-
cles approach their equilibrium abundance, since the production consumes thermal
energy of other particles. The result we refer to is pretty elementary and should
have been observed long time ago. Our objective now is to show that we have
a good definition of entropy in case of a changing number of particles (pair pro-
duction, Bremsstrahlung, etc.) and to investigate the back reaction arising from
the fact that the energy used to make particles needs to be provided by the other
particles present. Our findings indicate that most of the cascading evolution to-
wards the equilibrium abundance is just a restructuring in which little entropy is
produced, despite a large change in the particle number.

It is useful to appreciate here that the proof of the H-theorem found in
literature for the relativistic systems is given only for the case of particle number
conserving elementary processes [6]. We thus do not know which is the proper
definition of entropy S = -H  which would be an ever increasing object and which
would reach its maximum when some equilibrium distribution of particles and
their phase space occupancy number is reached. There is, however, a practical
way to deal with this problem, without solving first in all generality this probably
difficult and intricate issue. The physical systems of interest to us are characterized
by relatively large elastic and quasi-elastic cross-sections in which the energy is
shared by different particles, which are typically 10-100 times larger than the
particle number changing cross-sections. Therefore, it can be assumed that the so
called kinetic equilibrium signifying the sharing of the available energy between
the available particles, and the establishment of a common temperature, is reached
instantaneously as compared to the slowly evolving particle number.

Our strategy then is as follows: for each given particle number we maximize
the conventionally defined thermal entropy and in a second step we consider how
a change of particle number affects this result at fixed energy of the system — in
this way we take into account cooling (respectively heating) of the thermal system
which yields (respectively absorbs) the energy consumed (respectively released) in
the particle number changing reactions. In order to be able to define properly our
nomenclature and to pursue properly the strategy we have indicated, we develop
our results from rather elementary first principles.

2.1. Quantum distributions and entropy

We recall the discussion of entropy presented by Landau and Lifshitz [8]: from
the statistical definition one finds the entropy for each particle species denoted by
index 1 is

where the integral is over the conventional phase space dω = d 3pd3x/(2πh)3 (we
henceforth choose units such that h = c = 1). The upper + sign applies to the
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Bose particles (`B'), while the lower — sign applies to the Fermi particles ('F').
The Boltzmann limit is applicable when the occupation nl(x, p) of the phase space
by the particle species is small compared to unity. We recall

The distribution ni follows from the demand that the total entropy of the
system S = ΣS 1 be maximal for some given energy of the system E = Σ E' and
given (for us at any considered time) the number of particles of each species, Nl .
We find the functional form of nl(p, x) by maximizing the quantity

as a functional of {nl}. β = 1/T is identified in the usual way as the inverse
temperature and αl is related to the fugacity γl:

which permits to prescribe the presence of any given number of particles. The
well known functional for the quantum distribution functions follows from this
consideration:

We reinsert Eq. (7) into the definition of entropy, Eq. (3) and obtain the explicit
expressions

Note that γl enters as a factor into all Boltzmann exponential e--βε and is often
therefore referred to as the phase space occupancy factor. All this is text book
knowledge, as long as particle number does not change.

2.2. Conserved quantum numbers

It is straightforward to introduce constraints, such as are needed when some
numbers (e.g. quark number Ng—Ng, strangeness, etc.) remain constant, while the
numbers of particles change. Physically, this occurs because quark number changes
only by pair production on the time scal of hadronic interactions. Therefore each
quark flavor is separately conserved. This remark incorporates in particular the
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conservation of baryon number and strangeness. Let us denote with q and q the dis-
tributions of quarks and anti-quarks, respectively. We now should be maximizing
the quantity

as a functional of q, q. The Lagrange parameter al allows to choose a fixed quark
number q — q = 3B, the parameter cep allows to choose a given number of q and g
pairs. The common nomenclature is

and λq is the quark fugacity and γq is the phase space occupancy parameter. Pro-
ceeding as before we find for the distribution functions of quarks and anti-quarks

2.3. Equilibrium particle distribution

As announced we shall now consider what happens in the thermally equili-
brated system when we consider the possibility of particle production. First, we
shall address the question which values will the Lagrange multipliers αl take at
the maximum of entropy, computed at fixed energy E of the system, which deter-
mines the value of β (we will presently not include baryon conservation and other
constraints, hence the chemical potential µq = 0). Let us consider the energy E
(which does not change) and entropy S as a function of al, β. We have

We first consider the usual case dε = 0. This leaves the last term of Eq. (16),
which describes the change of the entropy as the phase space occupancy changes.
We introduce
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We see that the change in entropy dS vanishes exactly when all αl vanish (or
equivalently, all γl —>1)).  Furthermore, we can see using Schwartz' inequality that
for any l <1 the change dS is positive for positive dγl while for γ l > 1the change
is negative, proving that the equilibrium point (γl —> 1) is a maximum of entropy
at fixed total energy.

It can now be expected considering the laws of thermodynamics that an
isolated physical system capable of a self-induced change in particle number will
evolve to this equilibrium point, where the entropy at constant energy is maximal.
So have we proven the H-theorem? No, since microscopic laws which lead to
particle production have to be investigated for each individual situation in order
to show that the time evolution of the system is leading to the equilibrium point. In
general, for complex physical systems with constraints there may be other maxima
of entropy, and moreover, there may be simply no reactions which can lead to the
maximum entropy situation.

2.4. Gluon fireball
We are now ready to examine the simplest system of dynamical interest to

us. We will study for illustrative purposes how a fully equilibrated glue gas state
at T = 250 MeV is reached. This (moderately) hot glue ball is a descendent of
a still hotter initial glue—parton ball which was once far from particle abundance
equilibrium and in which glue interactions have been producing particles at the
same time as the temperature needed to drop as the fixed energy was shared by
ever larger number of constituents. Our expectation and belief when we started this
exercise was that a lot of entropy is produced as the system develops towards the
particle abundance equilibrium. However, we shall show now that this is indeed
not so! The reason is that as the equilibrium in particle number abundance is
approached, we must adjust the temperature of the system, and the result of a
very subtle balance between the different effects is that we find below considerable
constancy of the entropy of the system.

We see this most easily considering the Boltzmann approximation: the factor
-y becomes a normalization factor which describes the average occupancy of the
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phase space relative to the equilibrium value, the additive term describes how the
entropy per particle changes as the occupancy changes. We find in Boltzmann limit

where a = gl/π2 and gl is the degeneracy. One easily finds how for E° = const the
entropy as function of γ varies

This functional has a very weak maximum at γ  = 1. For example we note that at
γ = 2 the entropy is at 98.3% of the value at γ = 1.

At this point it is perhaps prudent to review the more familiar case of a
fixed temperature environment and to briefly consider a thermally insulated box
in which the energy loss due to radiation is externally compensated keeping the
temperature constant, as in e.g. the usual black body radiator. The radiation spec-
trum displays the Bose shape, which minimizes the free energy F(γl, T) content
of the gas at fixed temperature. Recalling now that F = E —TS we can combine
Eqs. (20)—(22) which gives in the Boltzmann limit

which naturally has the minimum at 71=1. However, one now finds that a change
by factor two in γ, at fixed f3 leads to a change by 35% in the value of the free
energy and even a greater change in entropy. Thus we see that at fixed β the
equilibrium point γl —> 1 is much better defined, than at fixed E.

We now return to consider the isolated system at fixed E. The situation is
much less trivial when we look at what happens when we consider the more general
situation of a quantum gas at finite mass. We performed a numerical calculation
for a system of gluons. Our calculations are set up such that the particle abundance
equilibrium results at T = 0.250 GeV — due to energy conservation and constancy
of volume the energy density is always constant as function of γG (index 'G' is
henceforth dropped) and takes the value 2.66 GeV/fm3 . We will also consider
a thermal mass for gluons mg = 0.200 GeV, in which case we also choose to
have equilibrium at T = 0.250 GeV and therefore the energy density drops to
1.89 GeV/fm3 .

We show in Fig. 2 the entropy density S/V (units 1/fm3) as function of -y.
We note that for massless gluons we cannot proceed beyond γ = 1 because of
Bose-condensation phenomena not considered further here. We show by dashed
lines the same calculation performed using as glue mass the thermal value ml
0.200 GeV, which allows us to continue the calculation up to γ = 2.7. The remark-
able feature to be noted in Fig. 2 is the appearance of the very weak maximum at
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γ = 1. However, the temperature T shown in Fig. 3 evolves rapidly in the interval
0.1<γ<1.

Fig. 2. Entropy density S/V (units 1/lm3) at fixed energy density E/V =
2.66 GeV/fm3 for mG = O (solid line) and at E/V = 1.89 GeV/fm3 for mG = 0.200 GeV
(dashed line) for a (gluon) Bose gas as function of the chemical occupancy y.

Fig. 3. The temperature T as function of the chemical occupancy 7. Lines as in Fig. 2;
equilibrium point  γ=1 has been chosen to occur at T = 0.250 GeV.
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Fig. 4. Particle density N/V (units 1/fm3) as function of the chemical occupancy γ.
Lines as in Fig. 2.

Fig. 5. Entropy per particle SIN for a (gluon) Bose gas as function of the chemical
occupancy γ. Lines as in Fig. 2.

As we can further note in Fig. 4 the glue number density increases consider-
ably in the same region — it more than doubles for massless gluons. In Fig. 4 we
also note that the glue number density increases monotonically as we pass γ = 1
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for mG > 0. On the other hand, Fig. 5 shows that the entropy per particle drops
continuously — all these results are as expected from the qualitative result ob-
tained in the Boltzmann limit above, though we now see the remarkable flatness of
the massive Bose gas case beyond γ = 1. This may be interpreted as a new liberty
of such a gas to over-saturate the phase space under certain constraints, which
could be experimentally noticed in the central rapidity spectra of pions produced
in the nuclear reactions at low energies, due to the resulting distortion of the boson
spectral shape.

2.5. Expanding volume

A more realistic model of the nuclear reaction requires inclusion of other
particles and consideration of the volume expansion and obviously this is not the
place to develop this further. However, we note that in the expanding quark-glue
fireball there are no other known sources of entropy, since the expansion is as-
sumed to be a largely entropy conserving hydrodynamical flow process. This quasi
entropy conserving evolution is confirmed within the model of the parton cascade
[4] which also displays the unusually rapid production of the entropy in the initial
first instant of the collision. To do a similarly quantitative calculation we need in
principle to know with considerable precision the relative rates of change of the
volume V and the occupancy factor -y, the former driven by quantum transport
theory, the latter presumably by the microscopic processes, which are in principle
also part of a transport formulation (see below).

Details of even a phenomenological discussion are by necessity model de-
pendent, but we can obtain some interesting qualitative insights combining in
qualitative terms the expansion dynamics with the particle production processes
and cooling discussed above. For a (nearly) massless Bose gas we have

where E0 is the initial energy from which the flow term is subtracted. Both
a1(γ, βm), and a2(γ,βm) (which reduce to a in the Boltzmann limit) are eas-
ily determined factors and can be exactly computed. We find in particular for
βm-> 0:

In the Boltzmann limit, a1 and a2 —> a, and both are independent of a = In γ -1 ;
we find the example discussed earlier. We therefore take a1/a2 = 1. From Eq. (28)
we obtain

We see in Eq. (30) that the impact of the flow, which reduces the reservoir of
thermal energy is to reduce the growth in entropy due to particle production.
Since entropy increase was rather small anyway, it is now possible to suppose that
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we have S/S0 =1. Then we find from Eq. (30) that the temperature drop (or rise)
on the way to particle equilibrium is given by

where T11 is the final temperature with full particle abundance equilibrium. We see
that both hydrodynamical expansion and particle production cooling combine to
increase the temperature reduction, while both do not lead to appreciable entropy
increase.

3. Entropy production in elementary interactions

We have seen now how the final state allows us to determine the entropy
production, and further, we have to our surprise discovered that this entropy was
most likely produced in a very early stage of the nuclear collision when the hot,
nearly thermal distribution of partons was generated. This finding seems at present
completely inescapable and hence the issue becomes to formulate a theoretical
framework in which we can describe the initial quantum evolution and particle
formation. It is evident that a framework for such an approach can only be found
in a general quantum transport theory based e.g. on a generalization of the Wigner
distribution function [9]. Białynicki-Birula and collaborators [10] have formulated
just a suitable theoretical framework in order to tackle this difficult problem, and
we shall recall briefly its essential elements before proceeding.

3.1. Relativistic Wigner function

In Wigner's formulation of quantum phase space distribution, the function
W(x, p; t) which is the analog of the classical phase space distribution function, is
a split-point Fourier transform of the quantum density matrix. For the relativistic
quantum matter field it has been shown [10] that the proper gauge invariant,
relativistic generalization of the Wigner function can be

where the spinor indices i, j = 0, ..., 3. The coordinate r and momentum p are the
phase space variables of the state |Φ). Both r and p are similar to classical phase
space variables and do not contain h, which has been shown explicitly above. The
vector potential A, chosen in the Heisenberg—Pauli (temporal) gauge, is in principle
composed of two contributions: the external sources which do not undergo the
dynamic evolution here discussed and are assumed to be smooth in (microscopic)
world, and the so called "back reaction" terms, arising from the induced matter
field source current, which include the highly oscillating part (Zitterbewegung) of
a frequency v~ 2mc2/h with a mean distance λe~h/mc(the Compton wave-
length).
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In order to see the physical limits of the formalism the gauge invariant and
relativistic quantum Wigner function, Eq. (32), of a spin 1/2-matter field is decom-
posed into 16 distribution functions, amenable to direct physical interpretation,

where pi, σi and pici are 4 x 4 matrices. The distribution functions fi(x, p,t)
and gi (x, p, t) have precise physical meaning which can be inferred from their
momentum integrals: (fo, g1) form the current four vector phase space distribution,
f3 is the mass distribution, go is the spin distribution, g3 is the magnetic moment
distribution, etc. We do not have here the space to discuss in any detail the complex
dynamics that the relativistic quantum distribution functions f  satisfy. These
are first order differential equations in 8t, V and nonlocal (or infinite order) in
8p of the 16 real functions (fi, gi). It is the non-locality in p which reflects on
the intrinsically quantum character of the distributions. In the time variable there
appears to be complete reversibility in this complex dynamical problem, as we
should expect in quantum theory.

3.2. Classical limit and loss of reversibility

The full time evolution of this system contains both quantum flow phenom-
ena and particle production. It is totally reversible even if we recall that the field
A comprises the back reaction arising from the produced particles — but only
if this back reaction itself arises in a time-reversible way. This may be a tricky
issue since as is customary in quantum field theory both advanced and retarded
potentials are to be incorporated at quantum level, but only retarded potentials
are implemented at classical level. We leave for now this issue which has been in
the literature for some 50 years [12].

One can actually show [13] that the dynamical equations possess in a h —> O
expansion the good dynamical limit yielding in particular for both particles and
anti-particles the so called Vlasov equations, which describe the reversible flow of
a given particle and anti-particle assembly in presence of electromagnetic fields.
The variables of the problem which show this interesting limit are particle and
anti-particle phase space distributions, defined such that the number of particles
and anti-particles remains equal if we begin the dynamic evolution in a vacuum
state

An interesting point to observe here is that the two Vlasov equations, which emerge
naturally in the classical limit, are definitively not entropy generating, and that
they also do not contain the process of primordial particle production, indeed this
process did not occur in an expansion around h —>0.
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So how do we find and identify in fundamental transport theory the primor-
dial particle production (and presumably also in some sense entropy generating)
processes? How do we establish in a fundamental manner dynamical equations
in generalized semiclassical limit, where the flow phenomena are described in the
h->Olimit, while the particle production phenomena are retained? With regard
to these questions the formulation of the quantum transport theory in the physical
phase space [10] has a definitive advantage over other equivalent approaches [11].
While the problem is not fully solved today, an important step in this direction
was made when the fundamental modes of the BGR—Wigner function [10] were
determined: it is possible to recast the dynamical equations which the relativis-
tic quantum Wigner distribution satisfies into the form of an integral equation, in
which the kernel is a propagator function, and the singularities of its Fourier trans-
form are characterizing the fundamental modes. We refer the reader for details to
the work of Białynicki-Birula et al. [14]. Here we note that these singularities com-
prise both flow and pair modes: the pole structure of the (retarded) propagator
is

The causality condition on Get is guaranteed by the standard device of prescribing
pole positions via introducing ε- > 0+. Here G et (q , p) is the Fourier transformed
r --> q kernel G°ret(r, p), and L0[q] is the Fourier transform of a suitable linear
differential operator acting in conventional phase space. The retarded character of
the matter propagator in the phase space is not breaking the time reversal invari-
ance, indeed it assures it since the time reversed solutions are simply generated
looking at backward propagation with an advanced kernel. The choice of the re-
tarded boundary condition enforces causality on the action of matter fields. We
also note that the here chosen boundary condition of the matter field does lead
to the standard perturbative expansion in terms of the Feynman diagrams (which
comprise advanced and retarded solutions, at least to first order in the interaction,
as was shown [14] by explicit commutation of the vacuum polarization function.
The poles of the kernel are at

The upper sign in Eq. (37) leads to singularities with a minimal energy of 2m,
corresponding to pair modes, while the lower sign leads to singularities for p• q —> O
and thus corresponds to flow modes. Only these modes are found in the classical
limit. In the full theory, both dynamical modes are appearing next to each other in
full equivalence, however the presence of the threshold 2m in the pair case tells that
only when these high frequencies are present in the system we should expect to
excite pairs in the vacuum, and that the classical limit in which these pair modes
appear must be found in very judicious approach, since we cannot take simply
the limit h —> 0, nor can we coarse grain (that is average in the phase space),
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as the wavelengths associated with particle production are at the scale of the
Compton wavelength. A first principle solution to this problem is still not found;
phenomenologically one can proceed simply to add suitable particle (and entropy!)
source terms to the generalized Vlasov equations [15]. In such a phenomenological
description, reversibility is lost.

We see here that indeed a general framework to study the formation of the
initial entropy rich state has been formulated — we have a quantum transport
theory which generates naturally the classical motion as a limit h —> O and which
is capable to treat the nonperturbative aspects of particle production. However,
there is so far no understanding of the subtle transition from the full reversible
quantum theory to the classical limit accompanied by formation of particles and
entropy.

4. In search for entropy

We complete our study by returning to consider the fundamental problem
when and how was the entropy observed experimentally produced. We found that
the production must have occurred early on in the collision process, when the
system was most probably subject to the laws of quantum physics — one usu-
ally imagines that in this period the evolution ought to be time reversal invariant,
thus entropy conserving, until we somehow reach to the classical, asymptotic limit.
But are quantum evolution processes really truly reversible when particle produc-
tion is abundant? Quantum systems also evolve in time, and though in principle
they remain reversible, it can be easily argued that this reversibility becomes a
mathematical finesse e.g. soon after many particle pairs are produced into a large
volume. The separating (due to momentum conservation) particle pairs cannot
continue for ever to remain in exact phase coherence which will permit them to
find each other in order to re-annihilate, this remark is particularly true at high
energies here considered. Thus the Lionville time (time to recover initial state)
grows beyond the measure of infinity, on the scale of the life time of the Universe
and in particular, any slightest perturbation of the system will destroy the time
reversibility. Thus once even the slightest observation of the system is done, this
latent entropy hidden in the particles produced, becomes physically present. The
objective then appears to be to find a definition of entropy which sees the virtual
appearance of entropy in quantum reactions, such that there is no discontinuity
associated with the time growth of entropy. These remarks show clearly that one
of the important steps is to find the suitable definition which will be practicable
in the quantum domain.

The central problem is that there is presently no useful definition of entropy
in the quantum domain: we recall the definition originally considered by von Neu-
mann in terms of density matrix p:

This proposed form has an appearance which strongly resembles the usual Boltz-
mann expression. Unfortunately, this is a very misleading semblance since N is
a constant of motion (as are traces of any function of p satisfying the dynamics
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dp/dt = i[p, H]), and hence this definition implies that the entropy does not grow
in the quantum domain. Were this to be strictly true, all entropy produced in nu-
clear collisions would appear in a discontinuous way at the instance the quantum
evolution is observed experimentally. Such a description of reality is not palatable
and therefore we believe that a more useful definition ought to be found — the
interplay of the flow and particle production phenomena as we described earlier
in a quantum transport theory provides an intriguing point of departure in such
a search for a better definition.

Is the entropy an intrinsically classical concept or is there a more general
form of the quantum entropy definition, as we have been suggesting, which will
allow to introduce an effective arrow of time already at the quantum level? We
strongly believe in the latter, more rational conclusion, and further also see a
close relationship with the presence of inelastic reactions, in our discussion of the
particle production type, more generally any chemical, atomic, nuclear reaction,
with which is associated an effectively irreversible change of the structure of the
constituents.

In summary, we have described an effective way to measure entropy pro-
duced in relativistic nuclear collisions, we have studied the entropy evolution of
an isolated fireball at fixed energy and have shown that while it approaches the
particle number equilibrium, there is very little entropy produced. We took this
to imply that entropy was already generated at early stages in the collision, when
the dynamics obeyed quantum physics, but we could not determine how it was
produced — and we took this observation as another stimulus to seek entropy
production in elementary quantum transport theories.
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