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The semiclassical approximation for the quantum propagator of the
kicked top is shown to involve not only classical periodic orbits but also
complex generalizations thereof. Such ghost trajectories have complex ac-
tions S and thus contribute exponentially small terms as h —> O. However,
close to bifurcations ImS can be very small whereupon ghosts become quite
visible.
PACS numbers: 03.65.Sq, 05 .45. -1 -b

This talk is based on work done in collaboration with D. Delande, B. Eck-
hardt, and M. Kuś. We are happy to discuss our work at the meeting in honor of
Iwo Białynicki-Birula, to whom we express our heartiest congratulations and best
wishes.

Before telling the ghost story promised in the title, I would like to address a
few personal words to Iwo. I could name many reasons for my respect for Iwo. One
is the independence of his thinking; when, for instance, Iwo lectures about nonlin-
ear variants of Schrödinger's equation for massive particles or about a Schrödinger
equation for a photon, the audience is not dragged along a beaten path but ex-
periences the curiosity of a very original r esearcher. Quite a different achievement
of Iwo's is his Institute of Theoretical Physics at the Polish Academy of Sciences
here in Warsaw. That Institute has provided a scientific home to a group of highly
talented physicists. Like Iwo himself, his younger colleagues at the Institute could
easily have found much better paid positions in prestigious physics departments
abroad. Instead, and however inconvenient or even hard life may have been here at
times, they chose to stick together in a country where they felt they were needed
and where they belong; in a city where they had grown up and wanted their chil-
dren to grow up; in an intellectual community which had formed them and which
they wanted to keep blossoming. The Institute, now called Centre of Theoretical
Physics is beautiful testimony of a combination of practical patriotism and scien-
tific excellence which indeed has my highest esteem. Finally, I do not hesitate to
express my admiration of the life that Iwo and his wife Sophie are leading, in solid
and loving companionship through good days as well as hardship.
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Periodic orbits have long since been considered the tangible structure of
the phase space of nonintegrable systems, the structure around which chaotic
trajectories wind their largely unpredictable course [1]. More recently, the set of
classical periodic orbits has been seen to serve as a backbone to (the trace of)
the quantum mechanical propagator, at least in the semiclassical limit of strong
excitation [2]. Even a formally exact representation can be given to the quantum
propagator by summing contributions from classical orbits, provided the notion of
a trajectory is generalized so as to allow for explorations of a phase space doubled
in dimension by complexification [3]; such excursions are associated, e.g., with
tunneling phenomena, i.e. penetration of phase space regions inaccessible to real
classical trajectories.

A particularly noticeable and noteworthy influence of complex solutions of
real classical equations of motion on quantum behavior arises when a dynamical
system is steered through a bifurcation. In a tangent bifurcation, for instance, a
pair of (real) classical orbits appear when some control parameter κ is raised above
a critical value kc ; for k < kc that pair usually lurks outside of, but close to the
classical world as a pair of complex "ghosts" [4, 5].

From a semiclassical point of view complex periodic orbits can make no
more than exponentially small contributions to the (trace of the) propagator. This
is because such ghosts have complex actions, S = ReS + i Im S, such that their
semiclassical contributions exp(iS/h) acquire the magnitude exp(- Im S/h) which
indeed decays exponentially with h -> O (the wrong sign of Im S never seems to
become physically relevant). However, as k -> k, from below one has Im S O
and the two limits h -> 0 andk -> kccan conspire to impart quite considerable
weight to the ghosts.

Gutzwiller's theory accounts for real periodic orbits only. These appear in the
stationary-phase approximation of Feynman's path integral representation of the
trace of the propagator. When complex ghosts visit, as precursors of real periodic
orbits at an imminent bifurcation, they make saddle-point contributions to the
path integral which can greatly improve the semiclassical approximation.

Right at a bifurcation further improvements become necessary. As is well
known [6], the naive saddle-point and stationary-phase approximations diverge
at a bifurcation. That failure is due to the vanishing of quadratic fluctuations of
the paths admitted from the path extremizing the action. To get a meaningful
semiclassical approximation at or very close to k = kc one must therefore include
at least cubic fluctuations. A tangent bifurcation thus contributes a term involving
an Airy function.

In order to present the above ideas in more concrete terms we now turn
to periodically driven systems. Their stroboscopic period-to-period dynamics is
described by a quantum map of the form

Here ψn is the state vector after n periods of the driving; it is unitarily related to
ψn-1 by the so-called Floquet operator F. The standard semiclassical approxima-
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tion for the trace of the propagator now takes the form [5]:

All real periodic orbits of period n contribute here with their actions S and A
related to their stability. The very structure of the right-hand side in (2) suggests
to look at the one-sided Fourier transform with respect to the "variable" 1/h,

which should display, in its real part, a sharp peak whenever the real frequency ω
coincides with the action S of a periodic orbit; the weight of such a peak should
be proportional to the amplitude A.

We have undertaken calculations of Tn (ω) for a model system, a periodically
kicked top [4, 5, 7]. The specific Floquet operator chosen can be expressed in terms
of the components of an angular momentum vector J as

Obviously, this F accounts for a rotation about the x axis by π/2 followed by a
nonlinear rotation about the z axis by an angle proportional to Jz . The squared
angular momentum is conserved and yields a quantum number j as

A Hilbert space of dimension (2j +1) pertains to a fixed value of j and thus yields
representations of F by (2j +1) x (2j +1) matrices. As j grows large, semiclassical
behavior is attained. In fact, we may take j as a dimensionless measure of 1/h.
In the classical limit, j —> oo, the top is described by the classical unit vector
lim J/j whose end points range on the unit sphere as a phase space; for k » 1

that phase space is dominated by chaotic trajectories [6].
After numerically diagonalizing F for all integer values of j in the interval

1 < j < 200 we have determined the traces tr Fn for n = 1, 2, ... Upon adapting
the Fourier transforms (3) to the case of discrete j as

we have obtained spectra such as the ones depicted in Fig. 1 for n = 1 and a
sequence of three values of k. Of the four peaks in Fig. la (k = 12) three appear
precisely at the actions of fixed points of the classical dynamics. The second peak
from the left in Fig. la, however, corresponds to no (real) classical fixed point.
Upon increasing k to 14 we find the spectrum T1 (ω) depicted in Fig. lc where the
"quantum peak" has split into two and now both of these have a classical fixed
point as a partner. Classically, one has crossed a tangent bifurcation at k c = 12.73.
Therefore, had we chosen M large enough, already the case k = 13 depicted in
Fig. lb should resolve a doublet of peaks to which the one in Fig. la is a quantum
precursor.
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Fig. 1. Fourier transformed trace T1(ω; j o = 1, M = 100) of the Floquet operator of
the kicked top for various values of the control parameter k: (a) below kc = 12.73 with
a ghost peak at ω = 0.51 and three peaks corresponding to real periodic orbits; (b)
slightly above kc where the highest peak corresponds to an unresolved doublet due to
two real periodic orbits; and (c) sufficiently far above kc where the doublet is resolved.

The quantum peak in Fig. la may be interpreted as due to a complex solution
of the real fixed-point equation. Such a "ghost orbit" can indeed be found for
k < k, and for k = 12 turns out to have the complex action S = 0.51 + 0.02i.
A glance at Fig. la reveals Re S = 0.51 as the location of the peak in question.
Moreover, we have checked the height of that peak to decay with increasing jo as
exp (-0.02 jo), i.e. with a rate equal to Im S. In brief, the frequency dependence of
T1 (ω) in Fig. 1 quantitatively conforms to a semiclassical description (2), provided
the saddle-point contribution of the ghost is accounted for at k = 12.

When looking at the Tn(ω) with larger values of n and the corresponding
classical equations for period-n solutions we have found it not difficult to detect
further ghosts, i.e. to spot classical bifurcations in the quantum propagator. It
is not even necessary to hit, in choosing k, the immediate neighborhood of a
bifurcation value since Im S appears to grow rather slowly as kc — k increases.

A closer look at the integral representation of tr Fn will help to understand
the ghosts' high visibility. For simpliity, we again choose n = 1 and consider

where x is a real coordinate. For the kicked top such an expression arises [4, 5]
when coherent-state techniques are employed in evaluating tr F; the coordinate x
may then be x = cos ¢ tan(θ/2) where the angles θ and ¢ determine the classical
angular momentum vector as J2/j  = cos θ, (Jx + iJy )/j =exp(i

¢
) sin θ; a second

coordinate, y = sin ¢ tan(θ/2), has already been integrated over in order to arrive
at (7). For k near a tangent bifurcation one may expand the action S in powers of
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x — xc and k — k,. Putting x, = O one has

To determine fixed points one sets 8S/8x = O. Note that the term x 2 (k — kc)
secures x = O to be a doubly degenerate fixed point at k = If Sxk < 0 two real
fixed points arise for k > k, while below the bifurcation there is a pair of complex
conjugate ghosts. To leading order in k — k, one gets x s = ±[2Sxk(kc — k)] 1/2 . At
that value of x the integrand has a stationary phase if k > k, and a saddle point
if k < kc. The imaginary part of the ghost's action now comes out as

The exponent 3/2 in the foregoing power law explains why ghosts are easy to
detect: Im S increases rather slowly as kc — k is raised from zero.

On both sides of the bifurcation the integral (7) draws a contribution from
xs which is proportional to (82S/8x2 )-1/2 |x=x.  It follows, as is well known and
has already been mentioned above, that the naive stationary-phase or saddle-point
approximation to (7) breaks down when k —> k,. Right at and very near k, one
may instead drop Sxxkx 2 (k - kc) from (8) since it is smaller by a factor ~√ k- kc
than the terms with Sxk and Sxxx . One is then lead to a well known diffraction
catastrophe integral which contributes to tr F in terms of the Airy function as [6]:

which interpolates between the saddle-point and the stationary-phase result as k
is raised from well below to well above k,.

Ghosts are not a peculiar property of just the kicked top. Recently, Van
der Veldt, Vassen, and Hogervorst [8] have seen one in their spectra of He atoms
in strong magnetic fields. Scharf and Sundaram have ascertained them for the
periodically kicked rotator [9]. Main and Wunner [10] say their calculated spectra
of the II atom in a magnetic field abound of ghosts related to various types of
bifurcation. Stöckmann [11] is planning to locate bifurcations by varying the shape
of his microwave resonators. And, of course, in the light of Balian's [3] old ideas
all of quantum mechanics appears as a ghost story.
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