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The interaction of multi-level atoms with several to many lasers si-
multaneously is examined in two regimes, the "short" regime of resonant
atomic response to prescribed laser fields, and the "long" regime of reso-
nant pulse propagation in which several to many laser pulses pass through
an active medium composed of many-level atoms. Results obtained with
I. Białynicki-Birula et al. in the short regime are reviewed, and new results
in the long regime are described.
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In the fifty-year period 1875-1925 optical studies of the interaction of ra-
diation with matter, from infrared to uv frequencies, provided the fuel for the
quantum revolution. Data from these studies first called attention to regularities
in atomic and molecular spectra, anomalous aspects of the photoelectric effect and
of the blackbody spectrum, the apparent existence of "negative" oscillators in ab-
sorption, etc. This was the first golden age of quantum optics, although the term
quantum optics was naturally not in use at the time. After an interval of another
fifty years, and beginning very approximately in 1975, the field of quantum optics
has again been one of the most fruitful frontiers in physics. This second golden
age arrived with the development of the tunable laser, which provided optical
spectroscopists with the ability to manipulate atomic and molecular matter to
a degree barely dreamed of in the preceding decades. These manipulations them-
selves became interesting to study and atoms became "laboratories" for fascinating
micro-experiments.

In this note we focus attention on "short" and "long" aspects of the light-atom
interaction arising in studies of some of these manipulations. An important element
will be the "area" of a plane-wave optical laser pulse, which is now understood to
be a more fundamental measure of its strength than are more conventional mea-
sures such as pulse energy, fluence and intensity. Pulse area is defined by the time
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integral from the distant past up to the present time of the space-time-dependent
amplitude of the electric field of a pulse

where Ω(z, t) is the so-called complex Rabi frequency associated with the
light—matter interaction

It is implied that the electric field of the light wave, polarized in the (possibly
complex) direction e, is written E(z, t) = eΕ(z, t) exp [—i(ωt — kz)] + c.c., and d
is the dipole transition matrix element of the atomic or molecular transition with
which the light is resonant. It is clear from (2) that Ω can be thought of as the
dipole interaction energy between the atom and the light field in frequency units.
For simplicity we will take Ω to be real.

Pulse area is significant in the first place because it is numerically equal to
the angle of rotation of the Bloch vector [1] of a two-level atom in a laser field
(or the angle of rotation of an electron spin in a microwave field, etc.). Thus it
measures the degree of excitation of an atom coherently, i.e., without losing track
of any atomic dipole phase which may be induced by the exciting radiation. In
this way it is superior to the more familiar measures of excitation such as upper
level probability and inversion.

Now we will formulate the excitation question somewhat generally, consid-
ering a quantum system with N energy levels and using as many laser fields as
necessary. There is a Rabi frequency (2) for each dipole-allowed transition in an
atom, and we are interested in the excitation of an upper atomic level through suc-
cessive transitions via lower levels, possibly requiring the application of a number
of lasers together, each with its frequency tuned to a distinct atomic resonance.
This is sketched in Fig. 1, where two-level, three-level and (N +1)-level excitation
sequences are indicated. Multi-laser and multi-level excitation provides an inter-

Fig. 1. Three N-level systems, showing exactly resonant laser excitation along a chain
of dipole-allowed transitions.

esting mathematical problem because it allows mathematical methods developed
in classical mechanics (for problems identified long ago by Euler, D'Alembert and
Bernoulli) to be applied usefully to a quantum mechanical situation.

We assume that all transitions are exactly on resonance, and that Schrödin-
ger's equation is written in the rotating wave approximation (RWA) [1]. We denote



N-Level Atoms in Mułtiple Laser Fields ... 687

by am the probability amplitude associated with the m-th level of the atom. The
lasers are all assumed to be operating at constant field amplitudes. Then the
equations for the a's can be written

Clearly, the determinant DN of the matrix is related to the oscillation frequencies
for the amplitudes. This determinant is a Jacobi form and its minors satisfy the
recurrence relation

In the late 1970's, with Z. Białynicka-Birula, I. Bialynicki-Birula and B.W. Shore,
we studied these laser excitation problems both analytically and numerically for a
number of special cases [2].

In a general situation, such as is represented by the Jacobi matrix appearing
in (3), it is always helpful to heed advice attributed to Einstein, to make everything
as simple as possible, but not more so. Two historically relevant* special cases are
called "equal Rabi" and "harmonic" because they correspond to the simplifications

Ωm= Ω1and Ωm=√mΩ1. The first obviously means all Rabi frequencies have
been made equal. This is possible in atomic excitation. Transition wavelengths
are quite different from one transition to the next in an atomic excitation chain,
so different lasers are needed to obtain the required separate resonances, and the
laser intensities can be adjusted in such a way that the field strengths compensate
for differences in dipole matrix elements among the transitions, leading to equal

Ω's for every transition and thus equal elements in the Jacobi matrix. The second
special case corresponds to excitation of a vibrational ladder of molecular states. In
this case, the transition wavelengths are equal (if the vibration is purely harmonic)
and only a single laser is needed to effect all transitions, so the √m progression in
the molecule's dipole matrix elements (m + 1|x|m) will be present in the Jacobi
matrix and reflected in its determinantal solutions.

Even in these two simplified special cases the eigenfrequencies obtained from
the Jacobi determinant are generally incommensurate, but despite this there were
found [2] consistent patterns of behavior in the atomic level probabilities as a
function of time, and the patterns attain a close similarity for larger N. This is
indicated in Fig. 2 for the equal-Rabi case. One conclusion is that, independent of
the specific value of N, it is reasonable to expect the excitation of probability out
of the ground level to proceed sequentially through the lower levels to the highest
with a time lag from level to level.

*In the 1970's attention was called to problems associated with multi-level excitation of both
atoms and molecules due to attempts to improve isotopic selectivity in laser-induced ionization
and dissociation processes.
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Fig. 2. Probability of excitation of the levels in several N-level systems, with the initial
state labelled 1 (from Ref. [2a]). Note the general tendency for probability to flow from
the initial level to the opposite end of the "chain" and then return, with the highest
probability reached only at the ends of the chain.

With reference to the title of this paper, we have now reviewed the "short"
aspects of N-level light—matter interactions. That is to say, we have not intro-
duced any physical distance into our discussion at all. To treat the "long" as-
pects we must consider the propagation of the laser light. Thus we will next treat
multi-level excitation during propagation of multiple laser pulses through a volume
in which N-level atoms are dispersed in the manner of a uniform absorbing di-
electric medium. The first modern attempts to combine coherent atomic response
with on-resonance pulse propagation were successfully completed by McCall and
Hahn [3], who at the same time discovered a deeper significance for pulse "area"
as defined in (1).

Propagation requires that the dipole moments of the atoms be coupled with
the light fields fully dynamically. That is, up to now the atoms were only allowed
to respond to external fields, and the field amplitudes were fixed and could not
respond to the atoms. A fully self-consistent interaction that accounts for the
reaction of the fields to the atoms requires the introduction of Maxwell's wave
equation in addition to Schrödinger's equation (3). Suppose that we begin with a
general N-level atom. Then we may need N —1 laser fields, as mentioned already,
and the Maxwell equations for them can be written in terms of their respective
Rabi frequencies (since Ω is proportional to ε ). These Maxwell equations will be
only first-order equations [1] for the .2's, since the resonance condition eliminates
the need to be concerned with the rapidly varying carrier wave (and thus the
second derivatives in the wave equation), just as the RWA eliminated the rapid
atomic transition frequencies from appearing in (3). Thus we can write the Maxwell
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contribution to the theory in the form

where the µ's are the propagation constants proportional to the density of atoms
and the transition oscillator strengths, as usual [1].

It is well known, following the pioneering work of McCall and Hahn [3], that
the two-level self-consistent solution of these equations for a single propagating
field is provided by a pulse of the form

where V is obviously the pulse velocity and KV is the inverse pulse length. The
propagation constant p i connects the velocity and the pulse length: 1/V — 1/c =
μ1/2(KV)2. We note that this pulse solution shows no attenuation. It has the

form of a solitary wave, and is in fact a soliton. This is traditionally called
a "27r pulse" because the total area, according to the infinite-time limit of (1),
is just 2r. It is easy to understand the physical significance of the 27r condition,
because a 2π rotation of the atom's Bloch vector rotates the atomic state back
to its initial state at the end of the pulse. Speaking anthropomorphically about
the pulse, it requests the atoms, as it passes through the medium, to radiate light
in just such a way as to replace in its trailing edge whatever was absorbed from
its leading edge in order to maintain its shape. In return for this favor, it takes
nothing in the end from the atoms.

Now the question is, what happens in- the N-level case? It is clear that the
coupling of the Schrödinger equation (3) with the Maxwell equation (5) leaves
valid the Jacobi form that was considered in the "short" form of our problem.
However, the Maxwell equations act as a kind of constraint on the Jacobi form,
and a nonlinear constraint at that.

An approach that can be taken is somewhat analogous to what was fol-
lowed before. That is, we can look for eigenvalues in a generalized sense. Since the
equations are nonlinear we do not expect to successfully impose a uniform time de-
pendence like exp(—iλt), which was done to obtain the Jacobi recurrence formula.
However, after some inspection, coupled with some experience, it is possible to
see that there are space-time dependences that will do the job. That is, they will
reduce (3) and (5) together to a set of coupled algebraic equations. Of course these
coupled equations are nonlinear, and not amenable to the Jacobi analysis. Again
following Einstein's advice we first simplify things somewhat by taking the various
propagation constants μ to be equal. This need not be a severe approximation in
many cases, and indeed cases involving only a few levels exist where it is not an
approximation at all. One procedure we have identified asserts that all variables
behave "the same" in the sense that their space-time dependence is through the
single independent variable Z =  z — Vt, as in the McCall-Hahn pulse (6). Then
the simplest working rules for a solution are:
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Fig. 3. Numerical solutions of the coupled Schrödinger and Maxwell equations (3) and
(5) for the propagation of on-resonant pump and Stokes pulses in a Raman-type medium
(see middle sketch in Fig. 1 for the type of atom). For greater realism a slight atomic
relaxation has been included in the numerical evaluations. The intermediate level has
been assumed to decay (out of the 3-level system) at a rate equal to 0.08 times the value
of the peak Rabi frequencies, here taken equal for the pump and Stokes pulses (units
can be taken as Gilz). The pump pulse is injected with a small delay (time in units of
ps) after the Stokes pulse, to simulate the leading-edge delay between Ω1 and Ω 2 in the
idealized pulse solutions given in (7). The graphs show the changes in the pulses as they
propagate. The top graph shows some absorption of the pump pulse, and the middle
graph shows the corresponding amplification of the Stokes pulse. The bottom graph
shows the "dressed field" combination (9) of the same pulses, and its strong resistance
to any change at all. This confirms that the remark below (9) applies in contexts more
general than the idealized solutions (7)—(8).
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(a) the field responsible for the first transition (called Ω1 above) is proportional
to sechKZ,

(b) all other fields are proportional to tanhKZ,
(c) the atomic probability amplitude for the first level is equal to tanhKZ, and
(d) all other probability amplitudes are proportional to sechKZ.

There is not space to pursue a general situation, or to examine several deviations
from this set of rules that appear to be possible, so we will give here the explicit
solution to the simplest new case, a three-level atom (recall the middle sketch in
Fig. 1) being excited by two fields. The elementary solutions are

and after solving the nonlinear equations for the algebraic amplitudes we obtain

It is a useful exercise to check two things: that the probabilities associated with
all three levels add to 1 for all z and t, and that when the third level amplitude
and second field are removed, the previous one-field solution (6) of McCall and
Hahn is recovered. In regard to pulse areas we note that the tanh pulse is what
is called a 0-7r pulse since its total area obviously vanishes. The sech pulse has its
area determined by the "initial conditions," as in the McCall—Hahn case, but here
in addition to the pulse length (KV) -1 the initial conditions for Ω1 include the
amplitude of Ω2, which is already well established long before Ω1 arrives on the
scene.

This solution to an N-level propagation problem is an opening into questions
associated with the "long" part of the title of this paper. It appears to provide
new insights into the nature of multiple pulse propagation, and if the present pulse
solutions are to be called simultons [4] (probably they should), they are clearly a
new class of them. It is not clear to what extent the procedure for more general
"long" solutions can be controlled in such a nice way as the Jacobi forms provided
for the "short" solutions. However, one notes that a similarly "universal" behavior
is predicted by rules (a)—(d) for the long response as was found for the short
response [2], i.e., the response becomes qualitatively independent of the number
of levels N as soon as N is large enough. ,

Finally, it is amusing to note that these solutions provide an ideal example
of "dressed fields", which have recently been identified [5] in analogy to dressed
states of atoms. In the present example, there are two dresśed fields, according
to the prescription that has been advanced [5]. The most interesting of these is
denoted Ω_ and it is defined as follows: 	 .

A quick check, using (7) and (8), shows that Ω_ is strictly constant. Figure 3 shows
an example of a dressed field undergoing propagation in a three-level system. It
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is only very crudely similar to the solution sets given here, but it is nevertheless
obeying what appears to be the principle of dressed field propagation in three-level
systems — the dressed field (9) is almost completely invariant under space evolu-
tion.
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