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We emphasize the importance of finding the "true" observables of the
Einstein theory for canonical quantum gravity. The Hamilton-Jacobi theory
for constrained systems is outlined and its application in terms of Ashtekar
variables and Dirac variables is discussed. A specific example of a Bianchi
II model is solved and the role of one variable as a "time" parameter is
indicated. We end with a brief remark about an alternative approach.

PACS numbers: 04.60.+n, 04.20.Fy

1. Introduction

Iwo has always been interested in the fundamental problems of physics. And
so we have chosen to discuss one of the oldest and most perplexing problems in
general relativity — the search for the observables. These observables are not nec-
essarily measurable quantities. Measurable quantities, at least in a classical theory,
are those quantities which can be evaluated in a coordinate and gauge invariant
way relative to a measuring apparatus in a specified frame. The observables we
are talking about, the so-called "true observables", are the independent degrees
of freedom of the source free gravitational field [1-4]. The analogous quantities
in electromagnetism are the transverse parts of the electromagnetic field which
represent the data which uniquely describes the field independent of the gauge
frame. For the classical theory, the search for these "true observables" is an inter-
esting formal problem. For a quantum theory of gravity, it is a crucial problem.
According to Dirac [5], only these observables or functions of them, should become
quantum operators.

Recently there have been a number of proposals to deal with this problem
by introducing auxiliary fields. Carlo Rovelli [6] introduces a congruence of ob-
servers — he calls them clocks — whose dynamics are introduced explicitly into
the Lagrangian and Hamiltonian of the gravitational field. The clocks introduce
intrinsic coordinates through their labels in a 3-dimensional label space and the
proper time along their world lines. Karel Kuchar [7] accomplishes a similar result
using a pressure free dust to establish an intrinsic frame. While both of these lead
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to interesting results, we want to stress the importance of finding the independent
degrees of freedom for the empty space Einstein equations. In the following, we
shall make some brief historical remarks relevant to our thinking. We shall then
discuss some recent progress in the exact theory using the Hamilton–Jacobi for-
malism. But, we shall treat in detail only one of the Bianchi models in which the
program can be performed completely. We will  conclude with some remarks.

2. Background

The phase space of general relativity Γ , (gab, pa b ) consists of positive definite
3-metrics on a space-like hypersurface Σ  and their canonical conjugates which are
essentially the extrinsic curvatures of Σ  as embedded in 4-dimensional space-times

Kab is the extrinsic curvature and K is its trace.
A point of the phase space represents possible initial data for a solution to

the vacuum Einstein equations. However, because of the 4-dimensional diffeomor-
phisms which leave the Einstein equations invariant, suitable data satisfy four
constraints per space point

Up to a surface term, the Hamiltonian is a linear combination of the constraints,

N is the lapse function and N a — the shift vector.
Therefore, the physical phase space variables lie on a constraint surface Pc

defined by Ha = H| = 0. The constraints

generate 3-dimensional mappings of Σ —> Σ while

generates mappings orthogonal to Σ . Therefore, at each point of the constraint
surface, they generate a four parameter mapping of data for equivalent solutions.
Thus Γc is divided into four parameter families of equivalence classes of initial
data. The observables label equivalence classes and, therefore, are constant within
each class. Thus, modulo the constraints themselves, the observables have van-
ishing Poisson brackets with the constraints. Starting with a phase space of 12
dimensions per space point, reducing to the constraint surface leaves 8, and fully
reducing to the phase space of equivalence classes leaves 4 dimensions per space
point. Hence, a minimal set of observables will consist of 2 degrees of freedom per
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space point or four functions on the space-like surface Σ . According to Dirac, only
the algebra of these four functions should become the operator algebra for the
quantum theory.

One way to look for observables is to use the Hamilton—Jacobi formalism
[8-11]. In an unconstrained system in classical mechanics, the Hamilton—Jacobi
function, S(qa , πa; t), a = 1 ... n, is a solution of the equation

The new Hamiltonian is identically zero. Thus, the new coordinates and mo-
menta (γa, πa) are constants of the motion. A solution of the dynamical problem
is uniquely defined by these constants. Inversion of the transformation gives the
solution of the equations of motion in terms of the original variables

Often the new variables are not measurable; for example, the action coordinate of
the harmonic oscillator. Inversion of the transformation may then be necessary in
order to construct measurable quantities.

When the system has first class constraints [9]:

the Hamiltonian has the form

Because the functions λi are arbitrary, the propagation from the initial data is
no longer unique. The Hamilton—Jacobi equation becomes, because the λi are
arbitrary, generalized to

As the constraints generate canonical transformations which leave the Hamil-
tonian invariant on the constraint surface, they generate the symmetry transfor-
mations of the dynamical system which divide the constraint surface into equiva-
lence classes. In terms of the new variables, the constraints are identically satisfied.
Therefore, the index A =1...n  — m. The γA and πAare constant within an equiv-
alence class. These variables label a unique physical solution, but the inversion to
the original variables is not unique. In fact, in order to perform the inversion, it
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is necessary to introduce m parameters fi , i = 1... m, which may be arbitrary
functions of the time

The same is true if the Hamiltonian is just a linear combination of the con-
straints — H0 E 0:

However, in this case it follows from (9) that there is no explicit time dependence.
Therefore, the inversion also has no explicit time dependence. It may nonetheless
be possible to define the evolution of the system in terms of one of the parameters
introduced to effect the inversion.

3. Exact theory

Roughly two years ago, investigations using the Hamilton–Jacobi function
was renewed in an interesting way, principally by Newman and Rovelli [12, 13].
They make use of the Ashtekar formalism for general relativity so that the phase
space is coordinated by the canonically conjugate variables (Aia , Eia ), an SL(2,C)
connection and a densitized triad. In addition to the vector and scalar constraints
there is now also an SL(2,C) gauge constraint, so the constraints are

The holonomy group of the connection is defined by the parallel transport around
closed loops in Σ :

where the Ty are the Pauli matrices and xa = αa(s) is the closed curve. U itself
is clearly gauge covariant and its trace is gauge invariant. By making use of this
property, Newman and Rovelli were able to find a Hamilton–Jacobi functional
which satisfies the gauge constraint

where u1 and vi", I = 1 ... 3 are six scalar functions. Their canonical conjugates
qu I, qvI can be obtained explicitly from S. They then are able to satisfy the vector
constraint by choosing vI to be intrinsic coordinates on Σ.In order to treat the
scalar constraint one needs to express the connection and triad in terms of the new
variables plus some arbitrary functions. That inversion has not been performed and
it may not be possible to do so explicitly.
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We tried another approach. We work with the Dirac phase space (qab , 
pa b)

and introduce the coefficients of the characteristic equation for the 3-dimensional

The fully reduced phase space is easily constructed from this Hamiltonian. Rather
than continue with this hypothetical solution, we shall present a finite dimensional
model whose Hamiltonian has a similar algebraic structure.

4. Bianchi II model

We consider a homogeneous space-time, Bianchi type II, where only the time
dependence of the dynamical variables remains. Therefore, the vector constraint
is automatically satisfied and only the scalar constraint remains. In this case,
the Hamiltonian has a similar algebraic form to that just mentioned and we can
construct the solution to the Hamilton—Jacobi equation.

The metric is diagonal and following Misner one writes
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This system has a phase space of 6 dimensions with one constraint. Thus,
there are four observables to be found. Three quantities with vanishing Poisson
brackets with the Hamiltonian are immediately visible, p0 , p_, and p+ + 12e4 √43+,
but they are not independent. To find the Hamilton—Jacobi functional and the
other two observables, introduce P and Q by
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The observables on the reduced phase space are (Q+ , Q_, P+, P — ). We note from
the transformation that only β° is not determined. It is an arbitrary function of
the time and can very well be interpreted to be the time itself.

The transition to quantum theory can now be made in the usual way by

All quantities are real so there are no reality conditions to apply and Q± and P±
are Hermitian. Note that since these operators are constants of the motion, they
are Heisenberg operators. This point has been remarked on by Rovelli [14]. The
physical state vectors are functions of a commuting set of the observables, Q±, for
example, and the Hilbert space should be defined by square integrability with a
measure defined by the requirement of Hermiticity. That discussion will take us
beyond the scope of this talk.

Note, however, that the (QA, PA) are not obviously measurable quantities.
To get back to such measurable quantities means inverting the transformations and
expressing them in terms of these operators and β0. In this way, an evolutionary
parameter reenters the description. Thus we truly have a Heisenberg representation
with constant state vectors and "time" dependent operators.

5. Conclusions

The point we wish to emphasize is that it is the geometry which tells us
where we are and it is the geometry which gives a meaning to evolution or time
propagation. In fact, the geometry may tell us that "where" and "when" break
down and have no meaning. Wald [15], from a different point of view, has come to
the same conclusion. He considers as an example the Bianchi IX model which has
complicated phases of expansion and contraction. For his considerations, which are
based on the Wheeler—DeWitt equation, time is meaningless near the transition
points.

Recently, there have been some new developments along different lines. In
particular, there is the work based on the new variables of Abhay Ashtekar [16]
which makes use of the holonomy group. This appears to be moving in at least
two directions. One is to generalize the algebra of the holonomy group and thereby
obtain appropriate operators for the quantum theory [17, 18]. The other is being
developed principally by Rovelli and Smolin using loop variables to construct state
vectors which satisfy the constraints [19]. We think that this work is very hopeful.
These approaches in their own way are looking for the observables. Therefore, if
one wants to consider the quantization of the Einstein theory, there is little choice
but to try to find the observables.

Let us conclude by saying that this problem about observables was alive and
kicking when Iwo began his career. It is still interesting and vital today. And so is
he.
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