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In earlier work universal propagators were introduced for the Heisenberg
—Weyl group, the affine group, and the rotation group. By generalizing these
constructions we show here that it is possible to introduce a universal propa-
gator for a rather general unitary Lie group. In the context of coherent-state
representations, the universal propagator is a single function independent
of any particular choice of fiducial vector, which nonetheless, propagates all
coherent state Hilbert space representatives correctly.
PACS numbers: 02.20.Qs, 03.65.Ca

1. Introduction

A universal propagator has been constructed for the canonical coherent states
(see [1]), for the affine [or SU(1,1)] coherent states (see [2]), and for the spin
[or SU(2)] coherent states (see [3]). As a prelude to discussing the construction of
the universal propagator for general group-related coherent states, we first outline
its construction for the case of the canonical coherent states. Let P and Q denote an
irreducible pair of self-adjoint Heisenberg operators satisfying the CCR, [Q, P] = i,
where h = 1, then

defined for all pairs (p, q) E R2 , denotes a family of normalized, overcomplete states
for a fixed, normalized fiducial vector η. These states give rise to representation of
Hilbert space H by bounded functions,

defined for all ψ € H, which evidently depends on the choice of ψ. If H denotes
the self-adjoint Hamiltonian for the quantum system under consideration, then
the abstract Schrödinger equation

*Also at the Department of Mathematics.

(655)



656 	 J.R. Klauder, W.A. Tome

One then interprets this resulting Schrödinger equation (1) as an equation for iwo
degrees of freedom. In this interpretation y 1 = q and y2 = p are viewed as two
"coordinates", and one is looking at the irreducible Schrödinger representation of
a special class of two-variable Hamiltonians, ones where the classical Hamiltonian
is restricted to have the form H c (p1, y1 — p2).

Based on this interpretation a standard phase-space path integral solution
may be given for the universal propagator between sharp Schrödinger states. In
particular, it follows after some change of variables that the universal propagator
is given by the formal path integral
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where "x" and "k" are "momenta" conjugate to the "coordinates" "p" and "q".
Despite the fact that the universal propagator has been constructed by in-

terpreting the appropriate Schrödinger equation (1) as an equation for two degrees
of freedom, it is nonetheless true that the classical limit corresponds to a single
(canonical) degree of freedom (see [1]). This is a direct consequence of the restricted
form chosen for the quantum or classical Hamiltonian.

We will now show that it is possible to introduce an appropriate universal
propagator for group-related coherent states by generalizing the constructions for
canonical, affine, and spin coherent states.

2. Group-related coherent states and their propagators

2.1. Group-related coherent stales

Let us denote by Xa , a = 1, ... , N, the hermitian generators of an N-dimen-
sional Lie group G. The Xa are elements of the associated Lie-algebra g, whose
commutation relations are given by

wherein the summation convention has been adopted. From the structure constants
cabd we form the N(N x N) matrices

These matrices provide the adjoint representation for the Lie-algebra g, (see [4]).
In the following we denote by V[ι] a strongly continuous (faithful) unitary repre-
sentation of the Lie group G on an appropriate Hilbert space. Each element of the
representation is characterized by N-parameters, ιm, m = 1, ... , N. For definite-
ness we assume that the elements V [E] are given in canonical coordinates of the
first kind, i.e.,

With each such representation we associate a left invariant one-form, the so-called
Maurer—Cartan form,

In addition, we introduce a second set of coefficients Uab(ι), which are defined by

From these coefficients a matrix U(ι) = [Uab(ι)] is formed, and an implicit char-
acterization of this matrix is given by (see [5])

For all E and a fixed, normalized fiducial vector η €  H we define the set of normal-
ized coherent states corresponding to a Lie group G as

and we assume that these states give rise to a resolution of unity in the form,
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where dμ(ι) denotes the left-invariant group measure given by

Restricting attention to the so-called square integrable representations of G
(see [6, p. 39]), the existence of such a resolution of unity is a direct consequence
of Schur's Lemma for irreducible representations. In case the representation is re-
ducible, the resolution of unity must be established as one of the defining properties
of the coherent states. This may pose an additional restriction on the choice of
fiducial vectors allowed in the coherent state definition. For both compact groups
and non-compact groups we normalized the measure so that

in all cases we denote this normalization by 1/ I G |. Hereafter we assume that the
group measure has the appropriately normalized form

The normalized coherent states give rise to a representation of the Hilbert space
H, by bounded continuous functions,

defined for all ψ  € H, which evidently depends on the choice of η.  An inner product
in this representation is introduced in the following way:

the result of which is independent of the choice of the fiducial vector η. The
representation space is given by Lη(G, dµ(ι)); this space is spanned by the ψ n (ι)
for a fixed η and for all ψ€ H.

2.2. Propagators

If we denote by H(,X1, ... , XN) the self-adjoint Hamiltonian of a quantum
mechanical system on H, then the abstract Schrödinger equation

and its formal solution in terms of the evolution operator U(t) = exp(—itH)
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Here,

denotes the coherent state propagator for G, which clearly depends on the choice of
the fiducial vector η as does InIn contrast the universal propagator K (l", t" ; ,l't')
is a single function independent of any particular fiducial vector, which, nonethe-
less, propagates the ψ η correctly, i.e.

for any choice of fiducial vector. That the functions Kη and K are qualitatively
different can be seen from their behavior in the limit t" t'. On the one hand we
have

This is the usual reproducing kernel for group-related coherent states, which is a
projection operator in L 2 (G) onto the representation space Lη2(G). While on the
other hand if (5) is to hold for arbitrary η , we must require that

As a first step in our construction of the universal propagator we express the
group generators Xa , a = 1, ... , N in terms of differential operators that describe
their action on the representation space L η2 (G) of H, independently of the chosen
fiducial vector η. Using (3) and (4) it is not hard to show that

hold for arbitrary η. These operators are hermitian with respect to the group in-
variant measure for G. With plm = —i ae , m = 1, ... , Nwe define the differential
operators
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where K# denotes either Kη or K. Note that the initial conditions (at t = t'), i.e.
either (6) or (7), determine which function is under consideration.

Equation (9) admits two qualitatively different interpretations, one suitable
for Kη , the other suitable for K. When one considers Kη the operators xk(pι, i) are
simply representatives of the N operators Xk acting on the representation space

Lη(G).ForKa different interpretation is appropriate.

3. The universal propagator

When the universal propagator K is under consideration one interprets the
resulting Schrödinger equation (9) as an equation appropriate to N separate and in-
dependent canonical degrees of freedom. In this interpretation q1 = ti, ... , g N = ιN
are viewed as N "coordinates", and one is looking at the irreducible Schrödinger
representation of a special class of N-variable Hamiltonians, the ones where the
classical Hamiltonian is restricted to have the form H (x1(p , q), ..., xN(p,q)),in-
stead of the most general form 7{(p, q) = 7{(p1, • • • , pN, q1, ... , qN).

Based on this interpretation a standard phase-space path integral solution
may be given for the universal propagator for group-related coherent states be-
tween sharp Schrödinger states. In particular, it follows that

where " denote "momenta" conjugate to the "coordinates"pi ^...^ pN
"q1" • • • „"g r". Note that the Hamiltonian has been used in the special form dis-

cussed above and that its arguments are given by the following functions:

xk(p, q) = M-1kmpm , 	 k =1,...,N.

Since this is a standard phase-space path integral representation, the number of
integrals over the momenta p1,..., pN is always one more than the number of
integrals over the coordinates q1, ... , qN. The integration over the coordinates is
restricted to the group manifold G. If part of the group manifold is compact then
the momenta conjugate to the restricted range or periodic "coordinates" of this
part of the group manifold are discrete variables. For this class of momenta the
notation f {J dp(t) is then properly to be understood as sums rather than integrals.

4. Propagation with the universal propagator

For convenience in the following construction we assume that the represen-
tation V[ι] of G is irreducible. In that case we may choose a group element as a
"basic" propagator. Let us set

Then one finds for the time evolution of an arbitrary element of L η2 (G) under VT [β]
the following
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which holds for any η.  Here

where o denotes group multiplication. In the present case it is clear that there
exists a universal propagator such that

If this last equation is to be valid for arbitrary n and ψ . then we must reauire that

Now since we have chosen a unitary irreducible representation V[ι] for the
Lie group G, we are assured that any bounded operator may be constructed as the
(weak) limit of sums of such unitary operators (see [7, p. 45]). In particular, we
can represent any time evolution operator exp(—iTH) as the weak limit of finite
linear combinations of the V [,Q]. Let

This relation asserts that any desired universal propagator K can be written as the
limit of the Kn in the indicated sense. Stated otherwise any universal propagator
can be written as the weak* — limit of the set {Kn}n€N (see [8, p. 160]), i.e.,

Although the point is clear from the foregoing it is worth emphasizing that
the universal propagator evolves any state in a way that leaves the choice of η
invariant. Inasmuch as the choice of η corresponds to the choice of polarization in
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the sense of geometric quantization it follows that the universal propagator evolves
the system while at the same time preserving the polarization. Since this fact holds
for a general Hamiltonian we see that the universal propagator for the unitary Lie
group G provides an acceptable solution to the longstanding problem posed by
geometric quantization.

5. Classical limit

5.1. Classical limit

Even though the universal propagator has been constructed by interpreting
the appropriate Schrödinger equation (9) as an equation for N (canonical) degrees
of freedom, it should nonetheless be true that the classical limit corresponds to
degree(s) of freedom associated with the group G. As we will show this property
holds because the equations of motion obtained from the action functional for the
universal propagator of the Lie group G imply the equations of motion obtained
from the action functional for the group-related coherent state path integral.

Observe, for an arbitrary fiducial vector η, that the classical action appro-
priate to the group-related coherent state path integral is given by (see [6, p. 64])

i.e., we insist on vanishing dispersion as h —>0 .
Extremal variation of this action functional, with respect to the independent

labels ιb, holding the end points fixed, yields the equations of motion

Observe that the generally nonvanishing values of v1, ... , vN are the vestiges
of the group-related coherent state representation induced by η that remain even
after the limit h -> O.

5.2. Classical limit of the universal propagator

For the universal propagator the classical action functional is identified as
[see Eq. (10)]
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Extremal variation of this action functional holding the end points fixed yields the
equations of motion
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where we have used the fact that Ua f = M-1agwgf . Among all possible allowed
values of ci, ... , cN are those that coincide with v1, ... , vN for an arbitrary fiducial
vector. Hence, the above equations can be identified with the equation of motion
obtained from the action functional for group-related coherent states (see Eq. (12)).
Therefore, the set of classical equations of motion for the universal propagator
implies the set of classical equations of motion appropriate to the group-related
coherent state propagator for an arbitrary fiducial vector. Thus we find that the
set of solutions of the universal classical equations of motion appropriate to the
universal propagator for the Lie group G includes every possible solution of the
classical equations of motion appropriate to the group-related coherent state prop-
agator for arbitrary η .

We close this section by giving a proof of Eq. (17). To show Eq. (17) it is
sufficient to show that

Hence, we have reduced our problem to showing that (28) holds. To show
this we make use of the general rule
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which establishes equation (17).
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