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EXCITONIC MOLECULE IN WURTZITE CRYSTALS
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We calculate with the variational technique the fine structure of a biexci-
ton in wurtzite crystals with the effective electron—hole exchange interaction
taken into account. The values of the electron—hole exchange integrals are
taken from the free exciton Γ5—Γ6 splitting. We calculate the biexciton dis-
sociation energy and the ratio of mixing of the symmetric and antisymmetric
envelopes which arises from the electron—hole exchange interaction. Results
are presented for CdS, CdSe and ZnS crystals.

VACS numbers: 7i.35.+z

1. Introduction

The biexciton as the bound state of two Wannier excitons is described in
the effective mass approximation. The electron—hole exchange interaction mixes
two singlet states of opposite parity, therefore the ground state of the biexciton
has no definite parity under separate permutation of the spatial and the spin co-
ordinates of identical particles, two electrons and two holes, respectively. It was
shown by Ungier [1, 2] and Hayashi [3] in previous papers that in the simple band
structure (without total angular momentum classification according to spin—orbit
interaction) the ground state of the biexciton should be described by a two com-
ponent, symmetric and antisymmetric, spatial envelope function, but not only the
symmetric one.

The present paper is a continuation of the work about biexcitons in CuCl
crystal [4]. The structure of the valence band Bloch functions at k= O for wurtzite
crystals differs from that for CuCl and the exciton exchange splitting in wurtzite
CdS and ZnS is much greater than in CuCl. The effect of electron—hole exchange
mixing of the singlets of opposite parities in CdS and ZnS turn out to be of about
20%, while in CuCl is of about 5%.

(607)
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2. Biexciton states in two -band model of semiconductor

Semiconductors CdS, CdSe and ZnS, as crystals of the wurtzite structure,
possessing a uniaxial symmetry of group C6,, have a band structure characterized
with the top of the valence band at k = O (symmetry F9) and the bottom of the
conduction band also at k = O (symmetry F7). The notation of Koster et al. [5]
for the irreducible representations of space groups is used throughout this paper.
Two states of the valence band, both of symmetry Γ7, are split off from the F9
state by the crystal field and the spin—orbit interaction.

The conduction Bloch functions of 1'7 can be written as

where φ±i = (1/v")(px f ipy ) and per , py are the p-like functions. The states IT)
and J,) are the pure spin eigenstates of the spin operator of s = ź . Because of the
anisotropy of the wurtzite crystals, the states (1) and (2) are no longer eigenstates
of total J but only of J.

We assume that the one-electron Bloch functions

where k stands for k, m ; un , k. is a periodic function with the period of the crystal
lattice and is normalized to unity in a unit cell of volume Q. The ψn,k are normal-
ized in a large volume V = NΩ and satisfy the usual Hartree—Fock equation

We will assume the biexciton wave function as a linear combination of the states

I 0 11,0, being Slater determinants in which two-valence wave functions |ψ v,k(i))
and |ψv,k'(i')) are substituted by conduction wave functions |ψ c,l(i)) and |ψc,l'(i'))
in Eq. (6).

The restriction to the subspace of the 10 LO allows the formal reduction
of the 2N-electron biexciton problem to a few particle problem by associating to
each function Ili k k, > the two-electron and two-hole function
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where K = — iσy K0 is the usual time reversal operator and the K"„ k is the state
of the hole. Indexes 1,3 refer to the two electrons, indexes 2,4 — to the two holes.

In the subspace spanned by kk,> the 2N-electron Hamiltonian H is re-
placed by H(biex) , defined by the equation

which should be satisfied for all 1, 1', k, k'. It was shown by Forney et al. [6] that
H(biex) can be defined as

where E0 is the ground-state energy of the electrons filling the valence band, e2/εrij
are the screened Coulomb interaction terms with the interparticle distances rji and
the static dielectric constant e. The effective electron—hole exchange term

acting on the functions with separate pure spin part ψn k |s) (with s) = IT) or
s) = 1j)) reads as a projection operator

The lowest exciton and biexciton states are constructed from properly sym-
metrized electron functions F'7 and hole functions I'9. The symmetries of the biex-
citon states are given by the product of the irreducible representations

The excitons are formed with symmetry I'S:

F6 corresponds to a superposition of pure triplet spin states, while T5 contains
both triplet and singlet spin states. r5 is shifted by Δexch to higher energy by the
electron—hole exchange interaction.

The sixteen basis functions Wow) of the four particle space of the biexciton
can be chosen as those belonging to the irreducible representations of the group
C6„ [7] and possessing definite parities under permutation of electrons (µ = ±1)
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and of holes (v = ±1). Two states belonging to the Γ1 representation are of the
form

where µv = -- or µv = ++. In order to ensure the proper symmetry of the wave
function of identical fermions each |Γiμv)  of definite permutational parity has to
be multiplied by the spatial function of opposite parity

where µ = —p and v = —v. In previous treatments [5, 6] it was always assumed
that each biexciton eigenstate is proportional to one of the |Γi µv) of definite parity
under the permutation of the two electrons and two holes. In particular, for the
ground state the wave functions were chosen to be proportional to the II) . — —)
state [6, 7]. However, the two states |Γ1 - -) and TiI + +) are mixed by the
effective electron—hole exchange interaction, and they are not mixed with any
other µv) states. Thus the biexciton ground state wave function P), expanded
in terms of the four particle states, satisfies the stationary Schrödinger equation
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which represents the kinetic and the Coulomb energy of the four particles. J is
the exchange integral for transverse excitons [6, 9]. We adopt Dirac &functions
since the exchange interaction is assumed to be of short-range effective only in the
volume Q of the unit cell. Equation (22) differs from that for CuCI by factors in
front of electron—hole exchange terms d [4].

3. The ground state of the biexciton

In our calculation we take the spherical model of the band energies for the
conduction and valence bands in the vicinity of k = 0, Ec (k) = EG + l 2 k 2 /2me

and Ev (k) = —h2k2/2mh.
To find the ground state of the four-body system we employ a variational

technique. We choose for the ground state the lower eigenvalue of Eq. (22)

The value of the exchange integral J we take from the measured free exciton F5 -F6
splitting [7]:

with F(0) — the value of the exciton envelope at vanishing electron—hole distance
|F(0)|2 = 1/πa3eX7  where aex = εh2/μe2  is the exciton Bohr radius with the reduced

mass p = me/(1+σ). Here o = me /mh and aex = aD(1+σ) where aD is the neutral
donor radius [10]. The energy E(biex) , expressed with the parameters of the trial
functions Φ++ and Φ--, is numerically minimized. The form of Φ P°is that used
by Brinkman et al. [11j,
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with R — the hole–hole separation. The variational parameters n (integer), k, β ,
A, B, C of the functions Φ++ and the corresponding parameters of 41. -- are varied
independently in the minimization procedure.

The binding energy of an biexciton is defined as

where EG is the gap energy, E0 is the ground-state energy of the electrons filling the
valence band and Rex is the free exciton rydberg, Rex = μe4/2ε2h2. The calculated
binding energies, EB, as well as the ratios of linear coefficients b__ /b++ , which
are a measure of the admixture of the antisymmetric envelope function to the
symmetric one, are listed in Table.

TABLE
Calculated biexciton energies EB. Input data, taken from [11], are: er,
aex, Rex and Δexch• All energies are in meV.

4. Numerical results and discussion

Biexciton complexes are mainly observed in semiconductors with indirect
band gaps. For direct gap semiconductors, and especially for those with wurtzite
structure, there is much less experimental data. It has been shown experimentally
that the biexciton binding energy in CdS is equal to 4.8 meV [12]. Here we have
calculated this value to be 0.8meV. The agreement between the measured and
calculated values is not satisfactory, yet it is better than that 0.6 meV found by
Forney et al. [6]. The optimized wave function, Eq. (27), of the biexciton used
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here is unsatisfactory since it cannot reproduce more than about one half of the
biexciton binding energy, as is known from the work of Maksimovic et al. [13].
But Ref. [13] does not give the wave function necessary for calculation of the
expectation values in formula (25).

For typical semiconductors of wurtzite structure the values of the exchange
integral J, as well as the volumes of the unit cells are of the same order of magni-
tude [14]. The squared exciton envelope at vanishing electron—hole distance |F(0)| 2

depends on the cube of exciton radius. Thus, when the exciton radius aex is small,
the exchange splitting Δ exch" Eq. (26), is large and the electron—hole exchange
interaction included in the calculations reduces EB significantly. For large, Δexch
the mixing of symmetric and antisymmetric envelope components, the measure of
which is b__/b++ , becomes significant and binding energy of biexciton is a little
stronger than EB calculated with exchange correction but with only symmetric
envelope function [6, 7]. Since b—_ is linear coefficient in the envelope it can be
important, for large Δexch , in calculations of biexciton—exciton transitions.
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