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The numerical fitting of an analytical function representing electron
density profile at a jellium surface to the one tabulated by Lang and Kohn
is presented. The two sets of parameters entering the electron density pro-
file is proposed. The first one is obtained by purely numerical fitting, and
the second one is calculated under condition that electron density profile
must satisfy the Budd—Vannimenus theorem. The obtained parameters are
given as analytical functions of the Wigner—Seitz radius r s describing mean
electron density n in a metal (1b -1 = 4/3πs ). The comparison of presented
electron density profile with variational trial function given by Perdew is also
discussed.
PACS numbers: 73.30.+y, 73.20.—r

1. Introduction

The surface properties of the simple metals are mainly determined by the
electron density profile (EDP) n(x) and the potential barrier V(x) at the surface.

The simple metals are the ones which appear in group IA, IIA, IIIB and
IVB and are bounded by s and p valence electrons. The s and p orbitals are very
spread out and interact in the metal to give wide overlapping bands which are a
recognizable small distribution of free-electron bands [1].

Lang and Kohn [2] were the first who, using the local density approximation
for exchange and correlation, determined self-consistently n(x) and V(x), giving
tabulated values of these functions calculated numerically for the Wigner—Seitz
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parameter rs = (97r/4) 13 kF 1 values 2, 3, 4, 5 and 6 bohrs, in the interval (-1,1)
of the distance x (in 2π/kF units where kF is the Fermi wave number) from
the surface of the positive background. The numerical results of Lang and Kohn
(LK) were widely explored as a reference point for other calculations, mainly done
non-self-consistently [3-5]# In many cases, however, the analytical forms of n(x)
and V(x) are needed, especially for practical purposes.

The effective potential V(x) of Lang and Kohn was fitted by saturated image
barrier [6] and more recently by the analytical potentials given by Mola et al. [7]
which reproduce the first peak in the potential of LK (which is a Friedel oscillation)
and approach the classical image potential for large separation from the surface
as well.

The numerous attempts of approximation of the LK numerical values of
EDP by simple one or two parameters trial functions [8] was also made. The
parameters entering the trial EDP functions were usually determined by the charge
neutrality conditions, minimum of the surface energy or the Budd—Vannimenus
theorem (BVT) [9], or both these conditions. The analytical formula for n(x)
approximating properly charge densities tabulated by LK may enable to perform
the calculations of a surface properties of metals. For instance, the important
problem of the gradient corrections to the exchange-correlation energy of electron
at metal surfaces needs such a formula [10]. In this context we give in the present
paper the analytic expression for n(x), which is numerically fitted function to the
results of LK.

2. The model electron density profile

As it is well known, the semi-infinite metal (0 < x) may be simulated by the
electrons in the finite potential barrier at x = O with sine-wave form of the wave
functions k (x) = sin[kx--γ(k)1, y being the phase shift, thus the electron density

where Pe. 1 and ń is the electron density of a bulk metal. The above result can
be obtained by inserting the sine form of the wave function into Eq. (1).

In order to approximate the charge densities tabulated by LK by an analytic
function n(x) we propose this function in the form



Analytical Representation of the Lang-Kohn Density Profiles ... 	 595

where ai with i = 0, 1, 2, 3, y and ,l3 are parameters to determine.
In order to warrant that v(x) will be continuous with its first derivative, we

put

3. Numerical approximations

3.1. Approximation 1 (purely numerical)

The parameters 1;, y, xi, x2, a and ,Q are fitted by the least squares method
for every point given by LK (Table I, in [2]) for r s = 2, 3, 4, 5 and 6. Table I contains
these parameters, together with the values of the standard deviations a.

In practice, the simple metals are described by the values of r s which are
real numbers, not the integer ones like in LK tables. Therefore, we approximate
these parameters by the linear or quadratic function of r s: 

The above approximation, denoted further as 1, is purely numerical one without
any additional conditions imposed on the function (3). It does not satisfy the
charge neutrality condition (ChNC) (see Eq. (15)). The integral I = 10 -2 for
4.5 > rs > 3, and for the remained values of rs we have 1 = 10-1.
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3.2. Approximation 2 (charge neutrality condition,
the Budd-Vannimenus theorem)

The ChNC for jellium model

where θ(—x) is the Heaviside step function, is of course satisfied in the LK
self-consistent procedure, therefore we decided to perform the approximation 2,
which assumes equality (15).

In this approximation, we decided to introduce the BVT [9]:

as the additional condition. The εT(ń) is the sum of the kinetic, exchange, and
correlation energies per particle for the uniform electron gas of density ń, and the
electrostatic potential 0(x) is connected with v(x) by the Poisson equation

The LK results do not satisfy the BVT, in particular for low metallic densities
[9, 11], therefore it is not surprising that the approximation 2 does not reproduce
the LK results as exactly as the approximation 1 (compare Tabs. I and II).

TABLE I
The values of the parameters of the function v(x) (Eq. (3)) fitted to the
LK values of v(x) within approximation 1 by the least squares method
together with the values of the standard deviation u (in ń units).

The ChNC (Eq. (15)) is satisfied exactly, if the parameter A has the following
form:
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TABLE II
The values of the parameters of the function v(x) (Eq. (3)) fitted to the
LK values of v(x) within approximation 2 by the least squares method
together with the values of the standard deviation o (in ń units).

and the parameters xi, h, a0, ... , a3 are defined by Eqs. (4)=(8).
The condition (16) is fulfilled with high accuracy through choosing the re-

mainder parameters in such a way to minimize the function

The weight w was chosen to warrant the accuracy of fulfilling BVT to
ó d'T(n) < 10 -6 .n dii —

The obtained in the framework of approximation 2 parameters are collected
in Table II. Additionally, we approximate these parameters by the linear or quad-
ratic function of rs in the following way:

4. Discussion and conclusions

The comparison of computed electron density profiles with the LK results
may be done by discussing the values of standard deviations u given in Tabs. I
and II. Generally, standard deviations of approximation 1 are smaller than of
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Fig. i. The comparison of EDP obtained from Lang and Kohn results [2] (black circles)
with EDP calculated by the use of approximation 1 (e.g. (3)) with parameters given by
Eqs. (9) ÷ (14) for r s = 2 (solid line).

Fig. 2. The comparison of EDP obtained from Lang and Kohn results [2] (black circles)
with EDP calculated by the use of approximation 2 (e.g. (3)) with parameters given by
Eqs. (22) ÷ (6) for r s = 5 (solid line).

approximation 2. Both approximations are less precise for very low and very high
electron densities, i.e. for rs = 2 and rs = 6 than for intermediate densities. It can
be also seen from Figs. 1 and 2 where EDP for r s = 2 and rs = 5 are given. The
agreement with LK results is better for r s = 5 than for r = 2, especially in the
region where the electron density oscillates.

Another way for estimation the precision of the approximation 1 and 2 is
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TABLE III
The electrostatic dipole barrier Δφ and the work function
(in eV) for simple metals described by r s . The subscripts 1
and 2 relate to the values calculated by the use of the ap-
proximation 1 (Eqs. (9) ÷ (14)) and 2 (Eqs. (22) ÷(26)). The
subscript LK describes the results obtained self-consistently
by Lang and Kohn [2], while the subscript D and K labels
the values of φ calculated analytically from DPΔSCF [13, 14]
and from Koopman's [12] expression (Eq. (27)), respectively.

the comparison of the work functions calculated by the use of different EDP with
LK results. In Table III we present results for the surface dipole barrier AO _
Ø(oo)—Ø(—co) and the work function φ in the density range described by r s = 2=6
employing the Wigner expression for the correlation energy. The work function is
calculated according to the Koopmans definition [12]:

and the displaced-profile change-in-selfconsistent field (DPΔSCF) expression
[13, 14]:

Better agreement with LK values of work function for r s < 5 gives the approx-
imation 2 while for rs > 5 the approximation 1. The above result seems to be
contrary to standard deviation calculations which support approximation 1 but
approximation-2 fulfills ChNC and BVT, therefore is more efficient in work func-
tion calculations.

The magnitude of electron density in the surface region plays an essential
role in other physical phenomena as for example in adsorption [15, 16], in photo-
electron spectroscopy [17] or in adhesion [18]. Adsorption or adhesion energies in
contradistinction to work function depend on the tail of EDP because the bind-
ing energies are mainly determined by the overlapping of the metal and adatom
or metal—metal electron clouds. In these calculations [15-18] usually the different
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TABLE IV
The values κ(x) (the ratio of EDP given
by Perdew's trial function [19] to the
EDP within the approximation 1) for
the values of x equal to 0.1, 5.0 and x,,,,
where xm is the value of x for maximal
value of κ(x).

variational trial functions are used instead of LK EDP. In order to estimate the er-
ror committed when the EDP is represented by the variational trial function vp (x)
we have calculated the ratio κ(x) = vp(x)/vLK(x) in the interval (-5, 5), where
vp (x) is given by Perdew's trial [19] and vLK(x) by Eq. (3) within approximation 1.
The results are presented in Table IV, where r,(0.1), 1c(5.0) and κmax(xm), i.e. the
maximal value of κ(x), are given. They show that the ratio 1,(x) is increasing func-
tion of rs , which means that the use of the variational trial EDP gives the worst
values the smaller is the mean electron density ii of metal. Concluding, approxi-
mation 1 which better than approximation 2 describes the shape of EDP should
be used in adsorption and adhesion energy calculations while approximation 2 is
more advised in work function calculations.
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