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Nonlinear dynamics of an antiferromagnet in continuum approximation
on the basis of the Heisenberg Hamiltonian for two sublattices with bi-
quadratic exchange interaction in each sublattice and single ion anisotropy is
considered. Exact particular solution, describing the stationary kink move-
ment, including the region v > c, is found.
PACS numbers: 75.40.Gb, 75.50.Ee

1. Introduction

Nonlinear wave phenomena of an antiferromagnet have been actively investi-
gated in the last years (see [1-3]). Three possibilities are known to analyse nonlin-
ear waves in such magnetics: (i) on the basis of the system of the Landau—Lifshitz
equations [4, 5]; (ii) on the basis of the Heisenberg Hamiltonian [6]; (iii) on the
basis of analysis of an order parameter of antiferromagnet [7]. In the simplest
case these models lead to the sine-Gordon equation. The solutions of sine-Gordon
equation describe such experimental results as a domain wall movement in weak
ferromagnet i.e. ferromagnet with Dzyaloshinsky interaction [3] or soliton exci-
tations in quasi-one-dimensional chains like TMMC [6]. However, the analysis of
soliton dynamics with velocities v about the minimum phase velocity of spin wave
c is impossible because soliton width tends to zero when v —ł c. Therefore, it is
necessary to take into account high order derivatives on space coordinates to finite
soliton width in this region of parameter v. In other words, it is necessary to include
in our consideration the biquadratic exchange interaction in an antiferromagnet
Hamiltonian. The problem of simplification of the system of the Landau—Lifshitz
equations for antiferromagnet if high order derivatives are taken into account was
considered in [8].

On the other hand, a biquadratic exchange interaction is significant for high
spin systems [9, 10]. The role of biquadratic interaction for nonlinear dynamics of
ferromagnets was investigated in [11-14].
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In this paper we will consider nonlinear dynamic of an antiferromagnet in
a continuum approximation on the basis of the Heisenberg Hamiltonian for two
sublattices with biquadratic exchange interaction in each sublattices and single-ion
anisotropy.

2. Model

Let us consider the following Hamiltonian:

Then Eqs. (5), (6) can be simplified in a continuum description if we use
approximation usual for antiferromagnet
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The difference of Eqs. (5), (6) can be reduced to the following equation for vector
L:

where a is the lattice constant.
Equation (8) is the generalization of anisotropic σ  model of n-field.

3. Solution

Let us analyse Eq. (9) in angular variables for vector L (Lx = sin θ cos φ ,
Ly = sin θ sin φ  L  = cos θ). It is easy to see that if

Equation (11) is the higher order sine-Gordon equation and was obtained as a
generalization of the Frenkel—Kondorova model. For mathematical aspects of this
equation see for example in [15]. If γ = —6σ 1 i.e.

it is possible to find the exact stationary wave type solution of Eq. (11). This
solution can be written in the form [16]:

Here 10 is the kink width, x 0 = (α/K)1/2 is characteristic magnetic length i.e. the
kink width when v = O and al = γ = 0. In the case considered the formulas (12),
(13) describe the kink moving with velocities from O to oo, i.e. both larger and
smaller than c.
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The solution (12), (13) can be used for analysis of kink movement in an
antiferromagnet with generalized energy of anisotropy and at σ1 # —6γ if we con-
sider these solution as a trial function. Really, if we choose Hamiltonian describing
anisotropy as

Lagrangian density function, corresponding to Eq. (11), has the form

Then from the condition of extremes of Lagrangian density function (15), we can
obtain the following expression for kink width:

In order to estimate the kink width when v= c we can use formula (16). It is easy
to see that if K2 = 0, γ = —6σ1, formula (16) will turn into formula (13).

4. Summary and conclusions

In this paper we have discussed the role of the biquadratic exchange inter-
action in the nonlinear dynamics of the continuum longitudinal anisotropic two
sublattices Ileisenberg antiferromagnet chain. We conclude that the equation of
motion with this interaction gives generalization of the phenomenological equation
of the antiferromagnet nonlinear dynamics — anisotropic a model of n-field. Its
exact particular solution describes the stationary kink movement including the
region v > c.

Stationary kink movement will be realized when the action of the external
magnetic field is compensated by the domain boundary bracing force. A peculiarity
of the stationary kink movement with v > c is the Cherenkov radiation of spin
waves [1]. Consequently, the kink braking force and corresponding magnetic field
increase. This fact leads to additional difficulties in the experimental investigation
of the effect considered. Nevertheless, in our opinion the solution (12), (13) shows
the possibility of real superlimit kink movement in an antiferromagnet. In any case
this solution describes the kink movement in the region v = c well investigated
experimentally, since the kink width remains finite when v —> c and not tends to
zero in contrast to usual sine-Gordon model.
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