Vol. 85 (1994) ACTA PHYSICA POLONICA A No. 1

Proceedings of the European Conference “Physics of Magnetism 93”, Poznan 1993
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Basic {features of electronic transport in magnetic layered structures con-
sisting of alternating ferromagnetic and nonmagnetic metallic films are anal-
ysed theoretically. The considerations are restricted to magnetoresistance
originating from the rotation of the film magnetizations from antiparallel to
parallel alignment. The influence of spin-dependent potentials on the trans-
port properties is analysed for both current-in-plane and current-perpendic-
ular-to-plane geometries. Quasi-classical and quantum methods are used to
calculate the appropriate conductiyity. For current-perpendicular-to-plane
geometry the periodic spin-dependent effective electron potential plays an
important role and can generate giant magnetoresistance also when the elec-
tron scattering by impurities and interface roughness is independent of the
spin direction, contrary to the case of current-in-plane geometry when a
spin-dependent scattering probability is a necessary condition for the giant
magnetoresistance to occur.

PACS numbers: 75.70.Cn, 72.15.Gd, 75.50.Rr

1. Introduction

Owing to the discovery of giant magnetoresistance (GMR) in Fe/Cr layered
structures [1, 2] transport in magnetic layered structures attracted much atten-
tion in last few years. Recently, many details of the effect have been reported
and the effect was found in many other layered systems containing ferromagnetic
transition-metal sublayers [3]. The simplest structures in which GMR occurs con-
sist of two ferromagnetic films, say of thickness dm, separated by a nonmagnetic
spacer of thickness d, with antiparallel magnetizations in zero external magnetic
field. The antiparallel alignment is usually obtained owing to antiferromagnetic
interlayer exchange coupling which exists at some spacer thicknesses, but the ex-
istence of the coupling is not necessary for GMR to occur [4] and the antiparallel
alignment can also be achieved by other means. The magnetizations rotate to
parallel alignment in appropriate external field and the GMR consists in a large
change (drop or increase) of the resistance at the transition from the antiparallel
to parallel alignment of the film magnetizations.
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The effect is usually described quantitatively by the ratio

AR _ Ry — Ry (1)

Ry Ry
with Ry, and Ryy being the resistances in antiparallel and parallel configuration,
respectively. In all experimental data published up to now the ratio AR/Ry; was
positive, which corresponds to negative magnetoresistance (MR), but a negative
value of AR/Ry1 is also allowed. In the following the effect will be called GMR or
equivalently MR (GMR is simply a sufficiently large MR). The basic features of
the effect are: (i) the effect increases with decreasing temperature, (ii) it increases
with increasing number of magnetic films in the multilayer and (iii) it generally
increases with decreasing sublayer thicknesses.

In most experiments the GMR, was investigated for electric current flow-
ing parallel to the film plane (current-in-plane (CIP) geometry), but recently two
experimental groups have also succeeded to obtain GMR for currents flowing per-
pendicularly to the structure (current perpendicular-to-plane (CPP) geometry)
[5, 6]. In the latter case the effect is usually larger than in the CIP geometry.

It is generally accepted that spin-dependent transport in ferromagnetic tran-
sition metals is responsible for GMR. In general, one can distinguish two different
contributions to the effect. One of them is due to spin-dependent scattering prob-
ability (described by some effective spin-dependent scatlering potential V,) due to
impurities inside the films (bulk scattering) and/or interface roughness (interface
scattering). Another one comes from the periodic spin-dependent effective electron
potential U, of a pure and ideal structure (this spin-dependent potential is respon-
sible for the spin-splitting of the electron bands in ferromagnetic metals). The
scattering potential V, contributes in both CIP and CPP configurations, whereas
the potential U, is effective only in the CPP geometry.

Recent experiments [5, 6] in the CPP configuration raised several additional
fundamental questions. One of them is the role of spin accumulation layer at the
interface between ferromagnetic and nonmagnetic metals and the role of spin-flip
electron scattering.

Below we describe briefly basic methods of theoretical description of the
effect as well as the most important results. We start with a short qualitative
picture in the CIP geometry, which explains physics of the effect. Then, we describe
the quasi-classical and quantum methods used for evaluation of the MR. Finally,
we describe briefly the GMR in the CPP geometry.

2. CIP geometry

2.1. Qualitative considerations

Let us start with a qualitative description of the GMR. The effect can be
accounted for within the two-current model developed by Campbell and Fert [7].
The model takes into account the fact that the electronic charge in transition ferro-
magnetic metals is carried via two non-equivalent spin-majority and spin-minority
channels. At low temperatures spin-flip scattering processes are frozen out and the
spin relaxation time 75f is much larger than the momentum relaxation time 7,.
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Consequently, the two parallel conduction channels can be considered as indepen-
dent in the first approximation. They can also be assumed as independent when
the sample size is much smaller than the spin-diffusion length. Each spin-channel
can be then characterized by its own mean free path ), (Ao = vE7,, where vf
is the Fermi velocity which can be spin-dependent, in general). The GMR can be
understood qualitatively by taking into account a spin-asymmetry in scattering
probabilities.

Consider first the macroscopic limit, when the sublayer thicknesses are much
larger than the mean free paths for both spin-majority (+) and spin-minority (— )
electrons. The conduction electrons essentially do not sample then two sublayers
between successive scattering events, therefore any bilayer can be replaced by
two films without direct contact and, consequently, by two resistors connected in
parallel. In the case of independent spin—channels the total resistance of the parallel
and antiparallel configurations is equal to the resistance of the appropriate resistor
network as shown schematically in Fig. 1 for a simple symmetrical sandwich. It is
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Tig. 1. Resistor networks for the parallel and antiparallel configurations valid in the
macroscopic limit of the CIP geometry.

evident that the total resistances of both configurations are equal. Thus, there is
no GMR in the macroscopic limit in the CIP geometry.

The above arguments are not valid if Ay and/or A_ are comparable to or
smaller than the sublayer thicknesses. In that case the model shown in Fig. 1 is not
valid. The question arises whether the spin-dependent scattering processes can lead
to GMR in the CIP geometry or not. To solve the problem qualitatively let us con-
sider a symmetrical sandwich with a large spin-asymmetry in probability of elec-
tron scattering from impurities located inside the magnetic films (described by the
spin-asymmetry factor N, = 7./7;.) and/or from interface roughness (described
by the factor Ny). It is easy to conclude from Fig. 2 that the spin-asymmetry
in scattering probabilities leads to MR indeed. Only the case of bulk scattering is
shown there but the same arguments also apply to interface scattering. In Fig. 2 the
spin-minority electrons are assumed to be scattered very weakly (“fast electrons”),
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Fig. 2. Schematic electron conduction in layered structures with strong spin-asymmetry
in scattering probabilities {from impurities inside magnetic films.

whereas the spin-majority electrons are scattered very strongly (“slow electrons”).
In the parallel case the electronic charge is carried mainly by “fast electrons”. In
the antiparallel configuration the electrons of a given spin are spin-minority in
one magnetic film but spin-majority in the second one. Consequently, there are no
“fast electrons” in this configuration and the resistance is much larger than that in
the parallel configuration. This qualitative picture explains the origin of the neg-
ative MR (positive AR/Ry1). However, a positive MR (negative AR/Ry1) is also
allowed. This can take place in asymmetrical structures when the spin-asymmetry
factors in neighbouring ferromagnetic films are opposite in the sense that if the
spin-minority electrons in a given film are “fast electrons”, they are “slow elec-
trons” in nearest ferromagnetic films. The positive MR can also occur in structures
with spin-asymmetry factors for interface scattering at two successive interfaces
respectively larger and smaller than 1.0.

The above qualitative picture neglects the spin-flip scattering processes which
mix both channels, but it is easy to note that such processes reduce the GMR.

2.2. Quasi-classical description

Semiclassical theory of GMR is based on the Boltzmann kinetic equation
with the magnetic driving term neglected. For each sublayer the kinetic equation
can be written in the form

89s(2,9) | go(2z,0) _ eE 0f3(v)

5z T e mu ov )
agvz z T
where the axes z and z are normal to the films and along the electric driving
field E, respectively, whereas g,(z,v) is the deviation of the electron distribution
function from the equilibrium Fermi-Dirac distribution f2(v):

ga(z; 'v) :fa(Z; "J)_fg('v)' (3)
In general, f2(v) is spin-dependent due to spin-dependent effective electron poten-
tial U, in the ferromagnetic films. In Eq. (2) e is the electron charge (e > 0) and
m is the electron effective mass assumed to be independent of the electron spin.
In a general case we assume 77 # 7 and Uy # U in the ferromagnetic layers and
7t = 7y and Uy = U} in the nonmagnetic films. Equation (2) can be easily solved
analytically for each sublayer. Its general solution takes the form

e = RO 1y prenp (22, @
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where “4” and “—” correspond to v, > 0 and v, < 0, respectively and the
functions Fai('o) can be determined from appropriate boundary conditions. In the
simplest approximation [4, 8-10] one can write the boundary conditions in the
Fuchs-Sondheimer form

95 (2 =07) = Tog7 (2 = 0%) + Rogf (2 = 07), (5a)

93 (z = 0%) = Tog¥ (2 = 07) + Rog; (z = 0%) (5b)

for an interface at z = 0. The parameters T, and R, are the spin-dependent
coefficients of specular transmission and reflection, whereas D, = 1 — T, — R,
is the probability of a diffusive scattering at the interface. The factor N; can
be then defined as Ny = D_/D,. The boundary conditions for outer surfaces
can be obtained from Egs. (5a) and (5b) by assuming 7, = 0 and neglecting
the distribution function outside the structure. In the above approximation the
transmission and reflection coefficients are constant, i.e., independent of the angle
of incidence. In more realistic considerations this dependence has to be taken into
account [11], particularly when one wants to analyse the influence of the potential
U,. Having found g,(z, v) in each sublayer one can find the current density j,(2)
inside each film (per unit length along the axis y) from the formula

Jo(2) = —e (%1-)3/v,g,(z, v)d3v. (6)

By integrating over z and summing over all sublayers one finds the total current
flowing along the electric field, which allows to find the resistance of the structure
for both parallel and antiparallel configurations and, consequently, the relative
resistance change AR/Ry1.

Such an approach has been extensively used for numerical calculations of neg-
ative MR in sandwiches, multilayers as well as in infinite superlattices [4, 8-11]. All
basic features of the effect have been reproduced with relatively good agreement
with the experimental data. However, there are too many parameters which de-
termine the value of GMR, therefore detailed comparison is rather difficult. What
follows from numerical calculations is that spin-asymmetry in bulk and/or inter-
face scattering probability is required to generate GMR. Spin-dependent effective
potentials in the magnetic films are not sufficient for GMR to occur.

Although all theoretical (and experimental) results published up to now con-
cern negative MR (positive AR/Ry1), the method can be also used for the case
of positive MR (negative AR/Ry1). Exemplary results for the case of an asym-
metrical sandwich are shown in Fig. 3, where the factor AR/R¢p is shown vs.
mean free path in nonmagnetic spacer. Only the interface contribution to GMR is
taken there into account. For the symmetrical case (equal spin-asymmetry factors
at both interfaces, N, = N!) the ratio AR/Ryp is positive (negative MR). In the
asymmetrical case, Ny = 1/N/, this ratio is of opposite sign (positive MR).

In the semiclassical approach described above the electron scattering by im-
purities inside the films and the scattering by interface roughness are not taken
into account on equal footing and the role of interface scattering is rather un-
derestimated. This inconsistency can be overcome, at least to some extent, by
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Fig. 3. Relative resistance change vs. mean free path in the nonmagnetic spacer in
the case of negative (a) and positive (b) MR. The curves are calculated for a sandwich
structure with dm = 10 nm, d;, =1 nm, Ny = 1 and specularity factor for outer surfaces
p = 0.9. Other parameters are Ny = N] = 6, D_. = DL = 0.5 (a) and N; = 1/N{ = 6,
D_ = D = 0.5 (b). The parameters describing electronic properties of the nonmagnetic
spacer are the same as those for magnetic films.

introducing a transition layer at the interface with a higher impurity concentra~
tion and with its own spin asymmetry factor. In that case the diffusive scattering
is ruled out from the boundary conditions.

The above description applies to situations with no mixing between two
spin channels. However, the spin-flip scattering processes can be included into the
formalism and, as one might expect, they lead to some reduction of the GMR.

2.3. Quantum model

Quantum description of GMR is based on the Kubo approach formulated in
real [12-15] or reciprocal [16] space. Within the real space Kubo formalism and
for independent spin-channels the global in-plane conductivity g, is given by the
formula

Jlle = /dz/dz'ggx(z z') (27r)2 /dq/dz/dz

x [Go(2,2') = Gy (2,2')] [G L(2',2) = Goo(#',2)], (7)

where L is the total thickness of the structure. The retarded and advanced Green
functions have been written here in a mixed representation and are taken at the
Fermi energy EF.
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The impurity averaged Green function G?‘,(z, 2') fulfils the following equa-
tion:

R S . h R ,

%m+ [ F—W—Uo(z’)+1mz—)-} Goo(z,2') = hé(z — 2'), (8)
where U, (2) is a stepwise function describing the effective spin-dependent electron
potential across the whole sample. The z-dependent relaxation time is given by
the imaginary part of the corresponding self-energy X(2):

1

'2—7::('2"—)' = —-ImZg (Z) (9)
and the self-energy is determined by the impurity potential, impurity concentra-
tion and the unperturbed Green function of the problem. All the above three
factors contribute to the z-dependence of the self-energy. In the following we use
the approximation according to which 7,(2) is constant across each sublayer but
may be different in different sublayers. This approximation simplifies Eq. (8) and
practically enables finding its analytical solutions.

To find GMR. one has then to calculate first the appropriate Green func-
tions G&,(z,z') from Eq. (8) and then G%,(z,2’) from the relation Gy, (z,2') =
G?J (2, z). This has to be done for both parallel and antiparallel configurations. Fi-
nally, one has to perform integrations indicated in Eq. (7). Consider for instance a
bilayer consisting of two identical ferromagnetic films of thickness di, separated by
an ultrathin spacer the thickness of which can be neglected. To calculate GR(z,2')
we will use the outgoing boundary conditions, which exclude the quantum size
effects imposed by external confining potential. The size effects can be taken into
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Fig. 4. Relative change of the resistance as a function of U/Eg for dm = 20 nm,
Er = 3 €V, Ay = 6 nm and Np as indicated. The inset shows schematically the
spin-dependent potential profiles in parallel and antiparallel configurations and for both
spin directions.
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account by assuming hard wall boundary conditions [15]. The integrations over 2z
and 2’ can be easily performed analytically whereas the integrals over ¢ have to be
calculated numerically. Some results are shown in Fig. 4, where the relative change
of the resistances, (Ry —R11)/Rqq vs. U/ EF is presented for Ny, = 7_ /74 = 10 and
Np = 1, where U is the splitting factor of the electron bands as shown schemat-
ically in the inset in Fig. 4. The GMR decreases with increasing U and vanishes
for U = E¥. For 7. = 74 there is no GMR. Thus, a spin asymmetry in relaxation
times is required to generate GMR.

The above results describe so-called bulk contribution to GMR. The interface
roughness was not taken into account. However, it can be easily included into the
formalism by assuming a transition layer at the interface with a higher impurity
concentration and with another spin-asymmetry factor.

3. CPP geometry

3.1. Macroscopic limit

Consider now electric current flowing perpendicularly to a layered structure.
For simplicity we restrict considerations to periodic superlattices. Let us assume
first the limit of infinite spin-diffusion length. It is clear that in the case of an-
tiparallel orientation both spin currents are equal, j; = j;. For parallel alignment
J1 # Ji, in general. In the macroscopic limit the resistance of the structure is equal
to the resistance of the resistor network shown schematically in Fig. 5 for parallel
and antiparallel alignment. In the CPP case one has to include additionally some
boundary resistances which exist even in the limit of ideal (flat) interfaces. It is
easy to calculate the relative change AR/Ry¢ of the resistance, which is equal to

\ [(p+ = p-)dm + 2(ry — r_)]? '
AR/Ry = , 10
/ m 4(p+dm + pndn + 2T+)(2p_ dm + pndn +27-) ( )
where py and p_ are the resistivities of the magnetic films for spin-majority and

Fig. 5. The resistor network model for parallel and antiparallel configurations in the
CPP geometry.
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spin-minority channels, p, is the resistivity of the nonmagnetic spacer (per one
spin channel) and 7y and r_ are the boundary resistances of a unit square for
spin-majority and spin-minority electrons. If py # p_ and/or ry # r_, then the
GMR does not vanish in the macroscopic limit for the CPP configuration.

Consider the case when 7y = r_. The MR is nonvanishing if there is any
spin-asymmetry in bulk resistivities of the ferromagnetic metal. Taking into ac-
count simple Drude formula for resistivity, p, = m/n,e?r,, one can see that
there are two factors which contribute to GMR. The first is the spin-asymmetry
in relaxation times (as in the case of CIP geometry) and the second one is the
spin-asymmetry in electron concentrations. The latter comes from spin splitting
of the electron bands. Thus, the spin-dependent effective potential U, can gener-
ate GMR even if 7, = 7_. The relevant parameter for the CPP geometry is then
the spin-asymmetry factor for bulk resistivities, which takes into account both
factors mentioned above. If py = p_ then the GMR can still occur if there is a
spin-asymmetry in the boundary resistances, i.e. if ry # r_.

The above resistor network model was used successfully to account for recent
experimental data obtained on Co/Cu and Co/Ag multilayers [5]. The appropriate
analysis showed a relatively large spin asymmetry factor for the interface resis-
tances, r_ /74 & 12 in Ag/Co for example, and a definitely smaller corresponding
factor for the bulk resistivities of Co, p_ /p4 & 2.9. The reason why those factors
differ so much is not clear [13, 17]. However, some conclusions can be obtained
from analysis of the boundary resistance in a simple model situation shown in the
inset in Fig. 6, when there is a potential step of height U at the interface and some
impurities are located at the interface with the areal concentration n (for clarity
we will omit the spin index in this paragraph). To calculate r it is convenient
to apply the Landauer formula. On averaging over the impurity distribution one

finds

mh 1 14 Js+ 2. —4J1(1 — 22)~1/2 1"
r= 573 ) ( )
4e? k. J3 ‘
where kg is the Fermi wave vector (Er = h’k%/2m), and J1, J; and J3 are defined
as follows:

5= ' 4ea/f(2), (12a)

Jo = /1 dz [2:(:2 — 22— 2(z® - xz)llz] /f(z), (12b)
Js = / ' dza?(@? — 222/ (), (12¢)
where °
f(z) = 22% — 22 + 2z (2 — :L'g)l/2 + ZF; {m + [(z? — 22)(1 — 22)] 1/2} (13)

and I and z. are defined as
I = (2m/h?)?V2n, (14)
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z. = (U/Ep)*?. (15)
Results of appropriate numerical calculations are shown in Fig. 6 for several values
of the parameter I'. For I' = 0 (perfect step) the resistance r increases from r = 0
at U = 0 to about 5.0 fQ m? (f = femto = 10~1%) at U/Er = 0.7. As U approaches
Eg the resistance r increases to infinity, as one might expect.
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Fig. 6. Interface resistance r of a unit square vs. U/Er for ¢gr = 1.3 x 1072° m™?* and
for I' as indicated. The inset shows the geometry.

In a general case the potential step for majority electrons is different from
that for minority electrons. Consequently, the resistances 74 and r_ are also dif-
ferent. Any value of the asymmetry factor r_ /74 can be obtained. For I" > 0 the
curves are shifted up. However, it is impossible to separate the contributions from
scattering by impurities and the potential step on the basis of available data.

One can now include easily the spin-flip scattering processes within the
macroscopic limit. This has been done first by Valet and Fert [18]. When both
spin-currents are mixed then only the total current is conserved across the struc-
ture. As was noticed first by Johnson and Silsbee [19] and van Son et al. [20]
transport across an interface between ferromagnetic and nonmagnetic metals leads
to spin accumulation at the interface. The accumulation layer extends on both
sides of the interface up to the distance of the order of spin-diffusion length f,
I8 = (D, 75F)1/2, with D, being the diffusion constant D, = vgA, /3. To describe
both currents one introduces two electrochemical potentials p and g which are
different, in general. The difference in the electrochemical potentials Ay = py —p
obeys the diffusion-type equation

o? 1 v
5.7 (@) — (=) = = [11(2) = ()] (16)

in which I is an average of spin diffusion lengths 1/ls = 1/ lif + 1/, Additional
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equation follows from the Ohm law relating the current densities and the driving
forces (1/e)Au/dz:
. 10p,

poda(z) = =255 (17)
(we assume constant resistivity across each sublayer). The above two equations
supplemented with the condition of the current conservation 8(j;+34;)/8z = 0 form
a basic set of macroscopic equations which allow to find the chemical potentials,
driving forces and current densities inside each constituting film. Those solutions
have to be matched with appropriate boundary conditions

€ [#0(23-) — polzg )] = ToJo(20) (18)
for an interface at z = 29. No spin-flip scattering at the interface is assumed here.
This procedure allows to find resistance in both parallel and antiparallel configura-
tions and finally the relative change of the resistance at the rotation. Appropriate
formulae have been derived by Valet and Fert [18]. The general tendency is that
spin-flip scattering processes lower the MR. When the sublayer thicknesses are
much smaller than the spin-diffusion length, then the model reduces to the simple
resistor network model discussed at the beginning of this section.

3.2. Ballistic range

Consider now the limit opposite to that described above, i.e. the ballistic
transport across the superlattice. This type of transport in magnetic structures
was analysed first by Bauer [21]. Consider a simple case when the spin majority
electron band in the ferromagnetic metal matches well the conduction band in
the nonmagnetic spacer. The appropriate potential profiles across the structure
in both parallel and antiparallel configurations as well as for both spin directions
are shown in Fig. 7. It is evident that the total number of quantum channels in

SORGROROE [ Te] Te1 J01 )

Fig. 7. Potential profiles for parallel and antiparallel orientations of the film magneti-
zations and for both spin directions.

the antiparallel configuration is lower than in the parallel one. According to the
Landauer formula the conductance of a quantum wire (per spin) is

62
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where ¢ is the matrix describing amplitudes of transition probabilities between
~ different channels. In the ballistic range Trt*¢ ~ N, where N is the number of

quantum channels and N = Sk2 /4= (S is the cross-section of the wire). Taking this
into account one finds the difference of conductances in parallel and antiparallel
configurations

e? Sk3 Ep-U

For U = 0 there is no MR (AG = 0), whereas for U = Er the conductance in
the AP configuration vanishes and AG = GF, which corresponds to infinite ratio

AR/Ryy:

AR = oo for U = EF. (21)
Rty :
This behaviour is opposite to that in the CIP geometry where there is no effect
when there is no spin-asymmetry in scattering probabilities, but even if it exists
it vanishes as U = EF. '

In the range between the ballistic and macroscopic limits the MR behaves

similarly to the MR in the CIP geometry, therefore we will not analyse it in detail.

4. Summary

Current understanding of the GMR is based on the spin-dependent prob-
abilities of electron scattering either from interface roughness or from impuri-
ties distributed inside the magnetic films. In the CPP geometry the periodic
spin-dependent effective electron potential U, may also play an important role
and can generate GMR even when the scattering probability is spin-independent.
Detailed comparison between the theory and experiment is difficult due to the fact
that all theoretical models, even the simplest ones, contain parameters which are
unknown. This is particularly true for parameters describing the interface scatter-
ing. Detailed calculations of the electronic structure might be helpful and could
allow to determine those parameters from the microscopic calculations.
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