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We review some recent results obtained for the dynamics of a single
hole and for the ground states at finite hole doping in t—J model. Next, we
address the role of orbital degeneracy in doped Mott—Hubbard insulators and
show examples of effective strong coupling models which include the orbital
degrees of freedom. These new- t-J models have interesting phase diagrams,
with the new magnetic phases stabilized by a competition between magnetic
energy and excitonic excitations. It is argued that the doped holes always
bind to the excitons and that the new phases identified on the mean-field
level give rise to local distortions of the lattice. We conclude that realistic
t—J models derived from the electronic structure of particular compounds
may be successfully applied for understanding both the observed magnetic
ground states, and the results of photoemission experiments, as we have
demonstrated recently for NiO.

PACS numbers: 74.72.—h, 64.60.—i, 64.90.+b, 75.40.—s

1. Hole doping in t—J model

Strongly correlated fermions occur in nature in heavy-fermion systems, high
temperature superconductors (HTS), doped Mott—Hubbard insulators, in 3He, and
in neutron stars. Generally speaking, these systems involve orbitally degenerate
states, as 3d or 4f (5f) states. Yet, in the most common approach to describe
the strongly correlated electrons the orbital degrees of freedom are ignored and
the problem is reduced to that of spin degeneracy alone. While the nondegenerate
Hubbard model, describing the electron correlations in the nondegenerate s band
has been used with some success to describe the physical properties of 3He [1],
the attempts to classify various magnetic, charge order, and superconducting in-
stabilities observed in solid state physics in terms of electrons interacting within
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a nondegenerate band [2] may serve only for qualitative, but not for quantitative
understanding. This is particularly obvious in heavy fermion systems where it is
generally believed that many of the unexplained features are related to orbital
degeneracy. Despite the existing counterevidence, in the absence of thorough un-
derstanding of the role played by orbital degeneracy it might be premature to
discard it completely in the context of high- T, superconductivity [3] and concen-
trate just on the properties which follow either from the nondegenerate Hubbard
model [4], or from the so-called three-band. model which deals with Cu(3dx2 _y2 )
and O(2pσ) orbitals, one orbital per each site [5]. But so far, with few exceptions,
like the 1/N-expansion for Ce intermetallics [6], the quadrupolar Kondo effect [7],
or the study of magnetic phases in degenerate e g band [8], orbital degeneracy is
not considered. We will argue below that in certain (doped) Mott—Hubbard insu-
lators the orbital degrees of freedom do play an important role and the physics is
different when they are discarded from the start.

The essential property of strongly correlated systems is a dramatic reduction
of certain charge fluctuations, compared to those of independent electron case. In
the extreme case this is expressed mathematically by taking the limit of infinite
Coulomb interaction, U —> oo, as frequently done in the theory of heavy-fermion
systems [9]. If this is done in the half-filled Hubbard model, the fermions are frozen
and the ground state has 2N degeneracy with respect to their spin orientations.
Doped holes can move only in the projected space, without producing doubly
occupied configurations. The problem is still far from trivial and the only exact
solution (apart from one dimension) is the ferromagnetic (FM) polaron obtained
by Nagaoka in 1966 [10]. It demonstrates that doping of this (infinitely) strongly
correlated system removes the spin degeneracy and promotes FM order, in fact
stable up to the concentration of holes of S 0.29 in a cubic three-dimensional
lattice [11]. In this extreme case a transition from one (spin-degenerate) to another
(FM) ground state takes place at infinitesimally small concentration of holes due
to the absence of any other magnetic interaction. It is this competition between
the kinetic energy of the doped carriers and the magnetic order present in the
system that we want to concentrate on in this short review. We will argue that
such a competition is common for all Mott—Hubbard insulators and show on a
few examples that doping leads in these systems to the onset of new magnetic
phases and, in certain regimes of parameters, to phase separation. The discussion
will concentrate on the models realized in two dimensions on bipartite lattices, as
these are relevant for the HTS and the related oxides.

We start with a strongly correlated nondegenerate band close to half-filling.
At large (but finite) Coulomb interaction U the ground state of the system con-
sists of singly-occupied (spins) and empty (holes) configurations, while the double
occupancies can be virtually excited and lead to an effective exchange interaction.
In this limit, the Hubbard model can be replaced by an effective strong coupling
model, the so-called t—J model [12],

where J = 4t2/U and the sums over (ij) include each pair of nearest neighbours
only once. at, is a creation operator for a hole with spin u at site i and Si =
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(Si+ , Si- , St) is a spin operator at site i, related to the fermion (hole) operators
in the usual way. The t-J model does not include the three-site terms [12] which
stand for the second nearest-neighbour effective hopping and contribute to the
propagation of the holes. [13]. Here we will concentrate on the properties of the
t-J model as defined in Eq. (1).

The discovery of high temperature superconductivity triggered a tremendous
theoretical effort to understand the properties of the t-J model after Anderson
proposed that it could be considered as generic for the pairing mechanism in these
materials [14]. Furthermore, the t-J model was derived from a realistic three-band
model which describes the electronic structure of the HTS superconductors [15].
In spite of this effort, the t-J model has been solved exactly only for J = 2t in one
dimension [16] and we have to rely on approximate solutions. At half-filling the t-J
model is equivalent to a Heisenberg antiferromagnet and one finds an antiferro-
magnetic (AF) ground state with long-range order (LRO) in two dimensions [17].

Before discussing the phase diagram at finite doping, let us first discuss
some significant progress in the understanding of the carrier propagation in the
Mott-Hubbard insulators as achieved recently in the studies of a single hole doped
in an antiferromagnet, described by the t-J model (1). It is well known that the
hole spectral function in the AF background is totally incoherent in the limit of
J -> co, as shown in the nonretractable path approximation [18]. However, the
ground state is in this case FM, as the kinetic energy of a single hole dominates
the problem [10]. At finite J the motion of an added hole is hindered on the
mean-field level by the strings of reversed AF bonds which increase the magnetic
energy proportionally to the length of the hole path [19]. Therefore, the coherent
propagation may occur only due to processes involving closed loops, in which a
moving hole repairs the defects in the spin order by retracing its own path. The
simplest of those involves six elementary hoppings on a square lattice [20]. The
situation changes drastically when the quantum fluctuations are included from
the start, as they are able to repair the defects in the magnetic structure which
appear on the string [21]. As a result, a coherent quasiparticle mode appears at low
energies, with the dispersion ti J [13, 22], consistent with the overlap of the hole
wave functions dressed by local quantum fluctuations [23]. This problem may be
represented as a scattering of holes with the creation (annihilation) of a single spin
wave in a single scattering event. Fortunately, the vertex corrections decrease with
the increasing value of J, while the QP mode gradually dominates the spectrum,
and the spectral function calculated in self-consistent Born order agrees quite well
with the results of numerical calculations for finite clusters [24].

Having in mind the results obtained for one hole, one may expect that the
quantum fluctuations are crucial to understand quantitatively the transition from
the Mott insulating. AF state at half-filling to other magnetic states, including a
strongly correlated metal, with increasing doping. Indeed, the problem of the phase
diagram of the t-J model as a function of doping proved to be very difficult,
but certain qualitative statements can be made based on the results following
from different kinds of mean-field approximations. All these studies indicate that
incommensurate LRO is stabilized by doping, as the kinetic energy on the scale of

t is allowed once the spins are not precisely antiparallel. Therefore, the system
prefers a spiral or canted arrangement of the spins, rather than an AF one. While
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these two phases are equivalent classically, quantum fluctuations favour a spiral
over canted structure [25]. The resulting pitch increases with doping and eventually
the ground state becomes FM, i.e. the whole solid turns into a FM polaron. We
can illustrate this gradual change of the magnetic ground state by using a simple
mean-field theory formulated in terms of Schwinger bosons. The t—J model is
rewritten as [26],

where the original hole operators, at = bj , f t , are replaced by Schwinger boson
operators biσ and by hole—fermion operators L. The ground state is approximated
by the classical ansatz,

where the (uniform) difference between the two angles at nearest-neighbour sites,
|θi-θj|  equals 7r/2 in the AF state at half-filling. As a result one finds the
energy normalized per site

From the minimization of energy (4) over O one finds that the pitch increases as
a function of doping δ ,

Thus, the AF state is replaced by a spiral already at infinitesimal doping in this
approximation. At higher doping the spiral approaches gradually the FM phase,
reached at a critical concentration found from Eq. (5),

The numerically obtained phase diagram is presented in Fig. 1. The classical spin
approximation (3) captures already the essence of the changes in the magnetic
order induced by doping. First, the AF order is replaced by a spin spiral, which
goes over into a FM solution at high doping. However, the classical ansatz (3)
does not include correctly the energy gain due to quantum fluctuations in the AF
and spiral phases. Thus, the region of stability of the AF phase with the largest
quantum corrections is underestimated. A better mean-field slave boson approach
was proposed by Jayaprakash et al. [26] who diagonalized the MF problems for
bosons and fermions. The results are included for comparison in Fig. 1. The AF
phase is stable at finite doping for small t/J. The stability of the spiral phase with
respect to the FM one is also increased due to quantum fluctuations. In addition
to the phases given in Fig. 1, the latter approximation also yields a disordered
phase at high doping, 6 > 0.6 and t/J < 0.2. For the parameters relevant for HTS,
t = 0.4 eV andJ =0.13 eV [27], both approximations nicely agree and predict
the onset of spiral order at small doping.
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Fig. 1. Phase diagram of the .1—J model as obtained in the simple mean-field theory
presented in the paper (full lines) and in the Schwinger boson mean-field of Jayaprakash
et al. [26] (dashed lines).

Unfortunately, the above picture is strongly oversimplified, as the homo-
geneous magnetic states are locally unstable against the increase in the spiral
pitch [28] and the t—J model exhibits a strong tendency towards phase separa-
tion [29, 30]. This tendency occurs as the holes are expelled from an AF state
and can be easily understood in the regime of large J. Consider four holes doped
to the half-filled t—J model. On one hand, if they are in separate regions, the
magnetic energy of ΔE = 2zJ is lost in the Neel state, where z is the number
of nearest-neighbours. On the other hand, for a cluster of four holes on a square
lattice one looses only the energy ΔE = (2 + z)J. At small J the motion of a
hole in an antiferromagnet is frustrated and FM polarons are formed [30]. Thus
the system separates into hole-poor AF and hole-rich FM regimes. The instability
towards phase separation exists thus for infinitesimal doping at any value of J/t
[28, 30]. If the doping is increased, homogeneous solutions become stable again
[29, 30]. For instance, if t/J = 3, as in HTS, the phase separation is expected in
the t—J model up to δ= 0.15 [29].

The tendency towards phase separation is present not only in a strongly
correlated nondegenerate band. It persists in the Hubbard model for weak and
intermediate Coulomb interaction, and leads to the formation of incommensurate
phases with domain walls [31]. Similar solutions are also found in a three-band
model for the parameters realistic for HTS [28]. Indeed, experimental evidence is
accumulating that phase separation occurs in HTS [32]. It follows from the weak
dependence of the Fermi level on doping and the high hole concentrations required
for superconductivity. Furthermore, the inhomogeneities are directly observed in
the neutron scattering studies of the positions of apical oxygens. Such local inho-
mogeneities as charge or spin polarons, bipolarons, excitons, or domain walls are in
turn very susceptible to the changes of the electron—lattice interaction [33] and the
electronic system cannot be considered in isolation from the lattice. There has been
considerable progress in the understanding of the resulting ground states by finite
size diagonalization and incommensurate Hartree—Fock studies of the three-band
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model [34]. We believe that these tendencies have to be particularly pronounced
in the strongly correlated limit, where one deals with the effective Hamiltonians
of the t—J variety. However, this subject is still underdeveloped and we will limit
our discussion to the electronic degrees of freedom.

2. High spin t—J model for d9 configuration in La2Cu0 4

If one wants to understand the magnetic ground states which occur under
doping in a particular class of compounds, the t—J model does not suffice and
one has to consider holes interacting within particular orbitals. The aim is then
to derive an effective model which deals only with the effective holes within the d
orbitals. We start with HTS, where it has been argued that the doping leads to the
formation of Zhang—Rice bound states [15] and thus the problem may be reduced
to the t—J model. However, if one considers only the Cu(3d) orbitals, and their
respective crystal field splittings [35], the Cu(d3z2_ 1 ) orbital is the first unoccupied
orbital (by holes) in the undoped compound. The hole—hole interactions may be
then written in the rotationally invariant form [36]:

where the indices x and z stand for the orbitals dx2_0 and d 3 ,22- 1 , respectively. U
and JH stand for the Coulomb and exchange interactions. The last term in Eq. (7)
is the crystal field energy parametrized by a single parameter Ez . The hopping
part of the Hamiltonian is of the form

with α0 = 3, if atomic orbitals are considered [37]. Doping in a system described by
this Hamiltonian, H = H0~ -F Hint, leads to populating excitons, if only E, < JH,
as it is the case for the realistic parameters [38]. There are some theoretical argu-
ments which point out the importance of the d 3,2_ 1 orbitals [39], and it follows
as well from the band structure that the value of the gap in HTS may be quali-
tatively understood only if the al symmetry is explicitly included [40]. However,
the recent experimental data seem to give only a small (= 10%) occupancy of the
d322_ 1 orbital [5], in agreement with the analysis of the multiband model in the
Hartree—Fock approximation with the configuration interaction corrections [38].
Thus, while the a l symmetry is certainly important in the HTS, the doping is not
in the 3d orbitals, but rather in the apical oxygen positions and the situation is
even more complicated than we are describing here by the above model (7)—(8).
Nevertheless, we shall consider this model as a starting point in this chapter to
demonstrate how the competition between the magnetic interactions and the ki-
netic energy happens in such a situation.

At a filling of one hole per site, the hopping (8) is entirely suppressed for
large U. One may then derive effective magnetic couplings between the local-
ized holes by using perturbation theory. Although for one particular choice of
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the ground state the resulting interaction may be simpler, in general one finds a
complicated Hamiltonian [41-43]:

In addition to the standard spin operators within a given orbital, x (dx2 - y2) or z
(d3,2 2-1), the Hamiltonian depends as well on the interorbital spin operators

which fulfil the standard commutation relations, and on spin-independent opera-
tors,

For simplicity, the terms which follow from the Hund rule exchange interaction JH
[42] were not included in Eq. (9).

As we have discussed in more detail elsewhere [41, 42], the spin—orbital
model (9) has a rather interesting phase diagram. If the Hund rule interaction JH
is neglected, as in Eq. (9), the ground state is AF, with the holes occupying the
dx2-y2 (d322- 1 ) orbitals for E2 > —16J/9 (E,2 < —16J/9). Finite JH promotes a
FM phase near the transition point at E2 = 16J/9, which exhibits an interesting
two-sublattice orbital order [41, 42]. In fact, such a phase was found before in a
similar (and less complete) Kugel—Khomskii model [44] and served as an explana-
tion of the experimentally observed FM order in K2 CuF4 [45]. It was one of the
few successes of these complicated theories, where a theoretical prediction [44] was
confirmed by the experiment [45].

Let us consider now doping by holes of the system described by the spin—or-
bital model at half-filling. Depending on the crystal field splitting, Ez , the doping
may give either a triplet or a singlet local state. The singlet situation is equivalent
to the usual t—J model as discussed above. If a triplet is created, its hopping
differs qualitatively from that of the singlet, as it possesses an internal spin degree
of freedom which can be exchanged with the magnetic lattice. There are two factors
which decide about the amplitude of the triplet hopping: (i) the character of the
hopping hole (x or z), and (ii) the initial and final spin states with respect to the
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hopping process. Taking these aspects into account, one may derive the following
Hamiltonian for the hopping of triplet holes [46]:bixσ

and σ are SU(2) Schwinger boson operators and have the same meaning as
those introduced in Sec. 1. We used here the products of SU(3) Schwinger bosons,
at , and auxiliary fermions, hi, to describe the internal spin degree of freedom
(mz = 1, 0, —1) and the charge of the moving triplet hole, respectively [46]. The
phase factors (-1) 6 'y come from the difference in the sign of the hoppings in the
x and y directions (y is a vector pointing in the y direction) which follows from
the parity of the dx2 _y2 and d3,2_1 orbitals. Equations (9) and (12) define a t—J
model for a triplet hole. The physics of this model is more complex than that
of the singlet model. The first qualitative difference is visible by looking at the
triplet hole moving in the Neel state. Due to the possibility of changing its own
component of the spin, it can move freely in an AF lattice, without leaving behind
a string of frustrated bonds. The coupling of such a hole to spin waves dresses this
free propagation, but appears to be divergent at small momenta [46]. Thus, unlike
in the singlet hole case, the vertex corrections are large and one has to go beyond
the self-consistent Born order to solve the one-hole problem.

To simplify the situation, we refrain from discussing the complicated cou-
plings of the magnetic and orbital degrees of freedom at finite doping and consider
instead the nature of the structural instabilities occurring due to the coupling
between the carriers and d—d excitons. Disregarding the spin problem, let us re-
consider the relatively simple spinless model [42, 43]:

which captures the essential features in the orbital channel. This model is motivated
here by the independence of the orbital dynamics in the hopping Hamiltonian of
the spin channels. We use slave-bosons, and b , to represent the orbital degrees
of freedom, and enforce the usual local constraint at finite dopings by including
Lagrange multipliers λi. The spinless model is solved in the slave-boson mean-field
(MF) approximation, in which the biξ operators are replaced by scalars (b), and
the local constraint (λi) are replaced by a global one, i.e. λi = λ. The hole motion
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is solved with respect to the undoped ground state which represents the physical
vacuum

In its region of stability the mixed phase, composed of the x and z d9 local states,
may have either uniform or staggered phasing. It can be verified that the lower
free energy is obtained with the uniform phasing which gives,

where b is the hole doping, I = 1/kBT, and Ek are quasiparticle energies,

Here we use the boson mean-field amplitudes (M = b and (ba ) = ηb, while
γk = 1/zΣδ exp(—ik • b) and γk = 1/zΣδ(-1)V 5y.δ exp(—ik • δ).As a result of nu-
merical minimization of Eq. (15) one finds three saddle points. For T -> 0, the
d9 background is either of pure dx2 _y2 character (for large Ez ), or of pure d322-1
character (for small Es ), or, finally, a mixed state where both orbitals are partially
occupied. In addition, near the transition from the x to the mixed phase both uni-
form phases are unstable and one finds a region, where the holes phase separate
into a hole-poor x state and hole-rich mixed state, as shown in Fig. 2. Looking

Fig. 2. Phase diagram of the spinless model (13) found in the mean-field approximation,
as a function of the d-d excitation energy, Ez/t, and hole concentration, b. The shaded
areas indicate regions of phase separation between the pure and mixed phases.

at the result we note that the doping induces the phase separation and the new
mixed phase (see Fig. 2). As in the case of the t-J model, the phase separation is
here a consequence of the existing competition between the crystal-field and the
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kinetic energy. More kinetic energy is gained, if an x-hole hops to a neighbouring
site, but this means a preexisting excitonic excitation which costs the energy Ez .
Of course, the energy is gained only if Ez is not too large. Thus, the FM polaron of
a singlet t—J (or Hubbard) model is replaced here by an excitonic excitation which
binds to the moving hole. This new kind of bound state gives rise to attractive
interactions between holes which may be formally derived [42]. As a result, one
finds a superconducting state promoted by the difference in the kinetic energy of
the moving holes which couples to d—d excitons. This new mechanism of pairing is
of course different from the excitonic mechanisms related to the intersite Coulomb
interactions [47], or the interaction between the electric quadrupolar moments [48].

It appears that the above picture is most probably too oversimplified to ac-
count for the physical reality. First of all, we neglected completely the magnetic
degrees of freedom which were shown before to lead to a mixed phase already with-
out doping [42]. In that case, however, the phasing of orbitals is staggered, therefore
one may expect another competition between two different kinds of mixed phases
under increasing doping. Furthermore, the uniform phasing is a direct consequence
of the Hund rule exchange JH which is a fundamental interaction in the model,
stabilizing the discussed triplet holes. Thus, it appears impossible to decouple
the spin and orbital degrees of freedom. Furthermore, another complication comes
from phonons. The staggered phasing couples to the quadrupolar mode, as we have
discussed elsewhere [41], and thus such a mixed phase is additionally stabilized. Fi-
nally, the crystal field excitation energy Ez cannot be considered to be a constant
parameter, as it gets renormalized downwards with increasing doping [39]. Thus, a
competition between a ferrodistortive (orthorhombic) and antiferrodistortive ten-
dency occurs and could lead to superstructures with a larger period. In fact, the
superstructures observed in oxygen deficient YBa2Cu3O7 [49] agree well with this
expectation. Also, the anomalous dynamics of the apical oxygens proposed to ex-
plain EXAFS [50] and neutron scattering data of a variety of high Tc cuprates [51]
are consistent with this scenario. Thus, we have to conclude that the structural
data [49-51] and the polarized X-ray absorption measurements [5, 52] contradict
each other and further experiments seem necessary to clarify the importance of
triplet holes in the HTS.

3. High-spin low-spin t—J model for d8 configuration (La2 NiO 4 )

The triplet t—J model presented in the previous section was an example of a
t—J model, where the doping leads to maximal spin states. Frequently one encoun-
ters the opposite situation and the spin states s induced by doping are lower than
those of the undoped background S. In the extreme case this may give localized
holes, if the hole has a spin lower than S — 1/2, as in CoO
(S = 3/2, s = 0) [53]. We want to concentrate here on a situation with s = S- 1/2.
The simplest example is of course the standard singlet t—J model. From the present
perspective it is trivial as the orbital degrees of freedom do not enter by construc-
tion. A qualitatively new situation occurs for S = 1 and s = 1/2. Unfortunately, it
is impossible to derive a generic model and we shall use a physical situation encoun-
tered in La2NiO4. The states of the background are now either triplets, or singlets,
depending on the value of the triplet—singlet excitation energy, Es = JH — Ez.
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The creation operators of the m-component of the triplet and of the singlet at site
i, respectively, may be written as follows:

using the notation introduced in Sec. 2. By making a perturbative expansion
around the localized d8 limit we derived the corresponding superexchange Hamil-
tonian [54]:

where J = 8t2/9U, and α1 and a 2 are the parameters depending on the geometry
of the wave functions forming the bonds. If a0~ = 3, as in Fig. 1, a l = α0/8 and
a2 = 1/4. Here niA = AiAi is the singlet number operator at site i and the
spin and pseudospin operators, Si and Ti, are defined by the triplet and singlet
components at site i:

These operators obey a SO(4) (dynamical) algebra, with the canonical commuta-
tion relations for the spins,

The SO(4) symmetry is explicitly broken by the ligand fields and fully symmetric
Hamiltonian is obtained only for (-1) 6 'y al —> 1, and Es,a2O. Although
the physical origin of our Hamiltonian is completely different, its mathematical
structure appears to be conceptually similar to the so-called singlet—triplet models
which were studied for the rare earth systems in the sixties [55]. While in the rare
earths the spin—orbit coupling dominates and the resulting total angular momenta,
Ji, couple by (dipolar) interactions, the orbital momentum is quenched in our case,
and the states with different total spin S interact via kinetic exchange.

As in Sec. 1, we use a classical spin approximation in order to get a qualitative
phase diagram of the model (19). Consequently, the ground state at half-filling is
written as

where the Schwinger bosons bi „ L 's are locally parametrized by two angles, θi
and 0i, b1 i = bi exp(—iΦi) cos2(θi/2), b0,i = bi√2sin(θi/2) cos(0i/2), and b-1,i =
bi exp(iΦi) sin2(θi/2). The two Schwinger bosons, ai and bi, satisfy the local con-
straint, ai -F b; = 1. Making a choice of Φi = 0, we find the classical energy on a
square lattice
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where Θiδ = θ i — Oi+δ. While the average boson fields a and b take uniform values
at these saddle points, a staggered order parameter for the z-th component of
both spins Si and pseudospins Ti is found. There are three saddle points: the
high-spin (b2 = 1) and low-spin (a 2 = 1) phases with energies εJ(HS) = — zJ and

εJ(LS) = zJα2 -F ES, respectively, and a third saddle point which corresponds
to a mixed phase, with a # O and b # O. The region of existence of this mixed
phase is determined by the physical condition for the amplitude, O < a 2 < 1. As
shown in Fig. 3, such a mixed state is favoured if 2a1 + a2 > 1. For α0 = 3, as
for dx2- y2 and d3 ,2 2_ 1 orbitals, 2a1 + a2 = 1 and it does not exist in the present
approximation. In fact, as we will show elsewhere [54], a mixed state is stabilized

Fig. 3. Phase diagram of the d8 t-J model (19) and (26), obtained in the semiclassical
spin approximation, as a function of low-spin exciton energy Es/zJ, and the superex-
change interaction al between the pseudospins Ta, for t/zJ = 1 and b = 0.25 (full
lines). Dashed line marks the transition from the low-spin to high-spin phase. For un-
doped system (b = 0) a small region of the mixed phase fora > 3/8 and Es/zJ .:s —5/8
is found (dotted lines).

by quantum fluctuations which are not included in the ansatz (22). The energy
gain in this latter mixed phase follows from the mixing of the singlet and triplet
configurations such that (Tz) 0, while the spin order vanishes, (S,) = 0.

Let us now consider the system doped by holes, as in the NiO2 planes of
La2_xSrx NiO4. Doping creates low spin states, like la -) = Ix T x J, zσ ). The hopping
of these holes is more complex than that of the triplet holes (12) in Sec. 2 since
we want to include the possibility of local creation (annihilation) of the low-spin
states Ai in the background. By collecting all the possibilities of the hopping we
derived [43] the following hopping Hamiltonian expressed in terms of the Bim and
Ai operators (17), (18), and auxiliary fermions representing the carrier ht :



Magnetic Phases and Generalized t-j Models ...	 157

Equations (19) and (24) define the t-J model for non-maximal spins in the present
situation, Hi j = Ht -1- H.. Looking at this complex Hamiltonian one identifies in-
teresting physical properties of the low-spin hole. Unlike in the triplet t-J model,
given by Eqs. (9) and (12), there is no free motion and the hole can only delocalize
by exciting spin-flips. Furthermore, the hopping in the low-spin background is hin-
dered because the hole can only delocalize by the hopping of its "wrong" (d3z2_1)
orbital component, in analogy with the "x" phase of the d9 triplet-hole problem.
There are also new processes which excite low-spin excitons in a high-spin back-
ground, or vice versa. These latter processes are analogous to the "polarization
hops" found before in the d 9 problem. There is, however, one qualitative differ-
ence to the singlet t-J model: a moving carrier may either create spin-flips (B$ 0

states) in the high-spin phase (usual strings), or it may create more exotic strings
of singlet excitons. Such excitations require only relatively low energy in the neigh-
bourhood of the low-spin high-spin transition, and one expects therefore that the
singlet states will be partially populated in doped systems. Altogether, the motion
of a single hole is more complicated than in the triplet t-J model, not to speak
about a finite concentration of doped holes. We will use again the semiclassical
approximation to get a qualitative insight in the phases which might occur in a
doped compound.

As in the singlet t-J model (2), the crucial step is the representation of the
hopping processes by the Schwinger bosons ai and bi and the auxiliary fermions,
hi. Using again the parametrization of boson fields with i = 0, and transforming
the hole wave functions by a canonical transformation we find [43]:

The meaning of the different hoppings becomes clear in the semiclassical limit.
It is well known from the t-J model that the competition between the FM ten-
dency coming from the hole hopping and the AF exchange at half-filling gives rise
to either uniform canting of the spins [56], or to a spiral spin structure [57]. In
the low-spin phase, on the contrary, holes with both spin directions can hop and
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thus both "1" and "2" quasiparticle states appear in the terms oc a 2 in Eq. (26).
The terms which describe the hopping in the mixed phase, oc ab, are novel. They
come in two varieties: (i) the ones cc cos(Θiδ), describing the mixing of the two
hole sectors, and (ii) the terms at maximum in the Neel state (oc sin(Θiδ)), rep-
resenting the propagating "high-spin" holes. This form of propagation is new and
does not suppress the magnetic order. To get more insight into the phase diagram
of the model, one has to consider either uniform ferro-orbital (FO), or staggered
antiferro-orbital (AFO) phasing of "orbital" variables, ai and bi, on the square
lattice. Thus, we have diagonalized the hopping Hamiltonian (26) for the canted
and spiral configurations of the spin, both characterized by a single parameter 60
which stands for the rotation of a pair of spins with respect to the Neel state.
As we show elsewhere [43], one finds at small doping (t8 < 2J) for the classical
enemy

where col is the minimum over k of the lowest eigenvalue ω1(k) found from the
diagonalization of Ht , that the AFO is more stable than the FO order. The numer-
ical results are summarized in Figs. 3 and 4. For positive low-spin exciton energies

Fig. 4. Phase diagram of the d8 t—J model (19) and (26), obtained in the semiclassical
spin approximation, as a function of low-spin exciton energy Es/zJ, and doping tδ/zJ
(full lines). Dashed line marks the transition from the low-spin to high-spin phase.

(Es > 0) we find the conventional high-spin phase to be stable. It develops a
twist in the spin order, with sin(δθ) = tδ/2J, and we cannot distinguish between a
spiral or canted structure in the classical approximation [20]. However, we expect
that quantum fluctuations will stabilize a spiral ordering, similar as in the t—J
model [25]. The FM phase is stable at large dopings, tδc = zJ. If Es < 0, the
low-spin phase is stable, while the holes move freely. By comparison the energies
of the high-spin and low-spin phases we find that the transition line is

In the vicinity of this transition we find a mixed phase, separated by first-order
boundaries from the other phases, with the doped holes having momenta near
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k = (0, 7r) (see Fig. 3). The mixed phase is characterized by no tendency to spiral in
the spin component, but instead by a staggered (AF) spin order (S=) with reduced
amplitude, and an AFO ordering in the orbital (a, b) channel. The pseudospins T=
have a net FM orientation because the spin and orbital staggerings cancel each
other. We note that the mixed phase exists in a rather broad range of ES/zJ,
regardless of the actual ratio of the hopping elements α0~, or the superexchange
interaction between pseudospins a l .

Different from the transition between the high-spin and the mixed phase, the
transition from the mixed to the low-spin phase depends on the doping level. For
larger doping the mixed phase expands at the expense of the low-spin phase. Both
transitions to the high-spin and low-spin phases are first order. The origin of this
first-order behaviour is similar to what we found in Sec. 2. There is a competition
originating in the kinetic energy because the doped holes occupy different regions
in k-space: the hole has a momentum close to (7r/2, 7r/2) in the spiral phase and
to (0, 0) in the low-spin phase, respectively, while in the mixed phase it has a
momentum close to (0, 7r). In spite of the first order nature of the phase transitions,
we do not find a tendency towards phase separation in the present case.

In Fig. 4 we present the phase diagram of the t-J model as a function of
doping. The stability of the phases is determined by the universal ratio tδ/zJ. Ob-
viously, this classical phase diagram is merely suggestive. The largest corrections
are expected for the transition line between the high-spin spiral phase and the
mixed phase, because the energy of the former phase is severely underestimated
in this classical theory. The role of quantum corrections in the mixed state is less
clear. Although the excitations are massive, we already noticed in Sec. 2 that the
used classical approximation is possibly not very accurate at the smallest length
scales [57].

4. Summary and outlook

The presented material demonstrates that the motion of holes in the Mott-
Hubbard insulators is highly nontrivial and despite of recent progress, remains
to be fully understood. In any case, this concerns the complex situations, where
orbital degrees of freedom start to play a role. As we have shown, depending
on the physical situation, there are different t-J models describing the strongly
correlated doped materials. Of course, it would be quite disappointing, if this
physics would be compound-dependent and no general statements could be made.
Fortunately, this is not the case. Although, the phase diagrams do depend on
the underlying microscopies, there are certain definite trends observed in all of
these cases. First of all, the competition between the magnetic, ~ J, and kinetic
~ t, energy, well known from the t-J model [30], could be identified as well in the
more complicated models presented in this paper. Consequently, the doped systems
exhibit tendencies towards incommensurate spin structures, like spirals or canting.
Such structures, although found on the mean-field level, may be unstable in reality
(at least at small doping) and the system may phase separate into hole-poor and
hole-rich regions. Secondly, the presence of the orbital degrees of freedom adds a
new energy scale to the problem which makes it already interesting without doping.
The competition between the magnetic and orbital (excitonic) energy may stabilize
new magnetic phases, as we have shown for the d 9 spin-orbital model [37]. The
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regions of stability of these new phases are, however, quite limited and so far only
one example of a system to which such a model applies (K2CuF4 [45]) has been
found.

Hole dynamics in the spin—orbital models is very interesting. A moving hole
may not only destroy the magnetic order, as in the t—J model, but it may also
compete with the orbital ordering. As a consequence, the hole dresses by magnetic,
as well as by orbital excitations and new phases occur, where it is dressed by both.
Such new phases were found both in the spinless model simulating the situation
in the high-spin (triplet hole) t—J model in d9 , and in the low-spin (s = 1/2) t—J
model in d8 . Therefore, we believe that the binding of excitons to moving holes, as
observed in these phases, is rather a rule than an exception in the Mott—Hubbard
insulators. This may be of importance in the cuprates and in the nickelates. For
instance, we believe that local excitonic excitations might be responsible for the
virtual disappearance of the Mott—Hubbard gap from the inverse photoemission of
doped nickelates, as suggested by detailed calculations by van Elp et al. [58]. Fur-
thermore, the excitons induced by doping have a tendency to couple to phonons.
For instance, the quadrupolar distortions are promoted by the mixed orbital order
of K2CuF4. Finally, it was shown recently that the spectral function of a sin-
gle hole is drastically modified by modest electron—phonon interactions and the
dressed holes become heavier [59]. Most probably, the ground states of certain
Mott—Hubbard insulators cannot be understood solely in terms of the electronic
models.

By considering the orbital degrees of freedom, we have derived a new variety
of t—J models. One may wonder whether a single moving hole alters the ground
state in a way qualitatively similar to that known from the standard t—J model. We
know already one situation (the triplet hole t—J model) where this is not the case:
the hole dresses itself with spin waves, but the vertex diverges at small momenta
and the quasiparticle picture breaks down [46]. It remains to be investigated how
the hole moves in the low-spin t—J model derived for d8 configuration.

One could argue that it is not clear whether the physics described by the
t—J model is ever realized. In fact, we know already one example, where the t—J
model is useful and allows us to understand the angle resolved photoemission
spectra of NiO [60]. Taking into account a realistic electronic structure, one may
derive a model Hamiltonian of t—J variety which describes the hole within one of
the two oxygen subbands, interacting with the spin waves propagating in the AF
background. More details are given in a separate publication [60]; here we want to
state only the main result of this study. In self-consistent Born order we find the
spectral functions composed of coherent quasiparticle modes, being bound states
of the Zhang—Rice type, and, in addition, of an incoherent background. The main
features of the obtained spectra agree quite well with the experimentally found
dispersions [61]. Thus, the experimental spectra can be interpreted in this case
as supporting the complex, strongly-correlated, character of the electronic states
in NiO, with both itinerant and localized aspects appearing in the spectra, rather
than supporting the naive picture emerging from the band structure calculations.

Summarizing, we would like to emphasize that only few universal concepts
apply to the whole family of t—J models. These are: (i) the competition between
magnetic and kinetic energies, as well as (ii) the binding of excitons to the moving
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holes. The t—J model itself proved to be very useful in developing the theoretical
concepts in this field. As it stands, however, it is too oversimplified to explain
the physics of doped Mott—Hubbard insulators at large. For instance, in its ap-
plication to the HTS, the hole spectral functions obtained from this model [13,
22] do reproduce only the low-energy part of the spectra obtained either by the
exact diagonalization of Cu4O12 cluster [62], or from the strong-coupling analytic
treatment of the Emery model [63]. Thus, they have been successfully applied to
the optical properties of HTS [64], but cannot explain the photoemission spectra.
We are convinced that further effort to understand the properties of the complex
t—J models related to particular physical situations will result in better and more
quantitative understanding of the physical phenomena in doped transition metal
oxides, the best characterized examples of the Mott—Hubbard insulators in nature.
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