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PSEUDOSPIN MODELS OF SUPERCONDUCTORS
WITH VERY SHORT COHERENCE LENGTH

S. ROBASZKIEWICZ

Institute of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland

We discuss a few models developed for description of superconductivity
with very short coherence length and point out their formal equivalence to
specific spin models, such as an anisotropic Heisenberg model (s = 1/2) with
two- and four-spin exchange coupling and with fixed magnetization in the
z-direction, an XY-Z model with single ion anisotropy and a Kondo-lattice
model with anisotropic on-site exchange. New results concerning the phase
diagram of the Hubbard model with strong attraction, the electromagnetic
properties of systems with the first order superconducting transition and a
possibility of local charge moment compensation in systems of coexisting
bound pairs and itinerant electrons are presented.
PACS numbers: 74.20.—z, 05.30.Jp,

1. Introduction

Recently, there has been much interest in superconductivity with very short
coherence length due to its possible relevance to high-temperature superconductors
(the cuprates, doped bismuthates and fullerenes) and also to the several other
exotic superconducting materials [1-5]. All these materials are extreme type-II
superconductors and they generally exhibit low carrier density, a small value of
the Fermi energy (EF < 0.1-0.3 eV), a short coherence length ξ0 and ξ 0kF= 1-10.
Thus, the size of a pair can be of the order of the interparticle distance (or even a
lattice constant). Moreover, for many of these materials, there are several universal
trends in the Tc versus condensate density dependence, the Tc dependence of the
pressure and the isotope effect coefficient and in the temperature dependence of
the penetration depth [4, 5].

These features strongly support the models with short-range, nonretarded
attraction [see Ref. [1] for a review]. One of the simplest effective models of this
type is the extended Hubbard model with an on-site attractive interaction

where ni = nit +ni,|, niσ = ciσ ciσ, iii denotes the transfer integral, U is the on-site
attractive (U < 0) interaction and Wij is the intersite density—density interaction

(117)
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between sites i and j. The quantity p is the chemical potential depending on the
number of electrons per site

The parameters of (1.1) can be treated as the effective ones and are assumed
to include all the possible contributions and renormalizations like those coming
from the strong electron—phonon coupling or from the coupling between electrons
and other electronic subsystems in solid or chemical complexes. The model (1.1)
has been extensively studied for the last few years and a great deal of its properties
have been established (at least in extreme limits). With increasing lUI/t the system
exhibits a transition from the weak coupling superconductivity of (predominantly)
BCS-type to the strong coupling regime of tightly bound on-site pairs where the
superconductivity results from the condensation of hard-core charged bosons (i.e.
the local pairs) into a superfluid state. For a detail review of the model including
thermodynamics, electromagnetic properties and critical behavior we refer the
reader to Refs. [1-3].

Isere, in Sec. 2 we will concentrate on the strong attraction limit and sum-
marize our new results concerning this case. Next, in Sec. 3, we introduce a model
of local pairs with finite binding energy and analyse its unique thermodynamic
and electromagnetic properties. Finally, in Sec. 4, we present the model of co-
existing bound pairs and itinerant electrons showing its formal equivalence with
a Kondo-lattice model with anisotropic on-site exchange and discuss the CDW
orderings and a possibility of local charge moment compensation in such system.

2. Pseudospin models for strong attraction

In the strong attraction limit, |U|>> t, W,a large gap of orderiU 1,exists
in the single-electron excitation spectrum for any n, which is equivalent to the
statement that the Fermi level is pinned for U < 0, close to its value at n = 1 (µ=
— |U|/2 + W0). Due to that fact, a standard perturbation theory for degenerate
systems [6, 7] can be applied for the model (1.1) to derive effective Hamiltonians
valid for any band-filling.

To the second order in tij/IUI one obtains [8]
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and, in the subspace excluding single occupancy of sites, they satisfy the commu-
tation rules of s = 1/2 operators.

The effective pseudospin Hamiltonian (2.1) has the form of an anisotropic
Heisenberg model, where the chemical potential p plays the role of an external field
along the z-direction, such that the magnetization has a fixed value (n — 1)/2. No-
tice that since p± operators are paulions the system can be equally well considered
as a charged hard-core Bose gas on a lattice [1-3] (on-site pair = hard-core boson
with a charge 2e). To ensure a fixed density n of electrons, the calculations on
Eq: (2.1) have to be performed at constant magnetization instead of a constant
field. Other differences from the standard magnetic problems concern a distance
dependence of interaction parameters. In magnetic systems the interactions Jij
and Kid usually have the same distance dependence and, except RKKY, they are
short-range. In the present problem the kinetic charge exchange Jij is short-range,
however Kij contains also the Coulomb part which can have a long-range char-
acter. Thus, for anisotropic lattices, Jij can be strongly unidimensional or bidi-
mensional, whereas Kij will remain almost isotropic. The correspondence between
electronic orderings of local pairs and types of pseudospin orderings is the following:
singlet superconductivity (SS) — XY order, charge ordering (CDW) — antiferro-
magnetic (AF) or more complicated order along the z axis, mixed CDW-SS phase
(M) — intermediate state, condensed phase of electron droplets (D) — droplets of
ferromagnetic order, CDW-SS phase separation (PS) — AF-XY phase separation.

For Wig repulsive and restricted to nearest neighbors (nn) the ground state of
the system consists of the CDW phase for n = 1, the M phase for 1 > n > nc and
SS phase for 0< n < nc. The value of nc decreases with growing K  J and depends
on the lattice structure [9]. Inclusion of the next nn attractive interaction W2 < 0
can stabilize, for 1 > n > nc , the PS state. Within the mean field approximation
(MFA)

In the PS state the system breaks into coexisting domains of SS (n < nc ) and
CDW (n = 1) phases. The sizes of the domains will be determined by long-range
Coulomb repulsion. When the SS domains do not percolate one should observe a
partial Meissner effect but without a zero resistance.

The Hamiltonian (2.1) includes only t 2/IUI terms in t/lUI expansion and for
better description of the strong attraction limit of the model (1.1) it can be very
important to evaluate the effects of higher order terms. Assuming the hopping
integral tij restricted to nearest neighbors (nn) and Wij = O we have extended
the perturbation expansion in t/IUl for the attractive Hubbard model up to the
fifth order. As a result one obtains the following effective Hamiltonian valid for
arbitrary n:
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H4 involves sums only over sets of sites connected by nn links. The diagrams
corresponding to particular terms in (2.5) are shown in Fig. 1.

Fig. 1. The diagrams corresponding to the particular terms in the effective Hamiltonian
(2.5). (a), (b), (c) and (d) corresponds to H2, H4 ", Hi' and H°, respectively.

As we see, with increasing t/lUI, the range of effective interactions between
pairs expands and the multisites effective couplings can develop and become im-
portant. Hamiltonian (2.5) is again a pseudospin model and it has the form of
a generalized Heisenberg model in external field with two-spin and four-spin ex-
change couplings and fixed magnetization.

The fourth order terms include: (i) the nn two-site coupling H4" which renor-
malizes (reduces) the tij/U term, (ii) the next nn two-site terms H4n, (iii) the
four-site term H, analogous to the cyclic four-spin exchange terms in solid 3 He
and in magnets. Obviously, the multisite term contributes in 2 and 3 dimensions
only, and in the case of a linear chain the effective Hamiltonian reduces to



Pseudospin Models of Superconductors ... 121

For n = 1, by making use of the attraction—repulsion canonical transforma-
tion [1, 8] for the Hamiltonian (2.5) one can derive Me effective Hamiltonian for
Me half-filled repulsive Hubbard model. The result is

where xij = 4σi • σ j and {σi } are s = 1/2 operators. It agrees with the expressions
obtained directly for the repulsiVe case by Takahashi [7] and MacDonald et al. [10].

Our effective Hamiltonians treat only 2N states of the starting model. The
other electronic excited states have higher energy (~|U|) and their contributions
to thermodynamic quantities are of the order of exp(— |U|/kBT). Thus the models
are applicable at kBT «| U| . The Hamiltonian (2.5) provides a good starting
point for a further analysis of the strong attraction limit of the Hubbard model at
arbitrary electron concentrations and well-founded methods of quantum theory of
magnetism can be used to study its thermodynamical properties.

As the first step in the investigation we have applied the mean field approx-
imation (MFA) to Eq. (2.5), as it usually gives correct qualitative information.
The phase diagram obtained in this way for sc lattice and two fixed values of n is
shown in Fig. 2. As we see the fourth order terms reduce T. With decreasing IUI

Fig. 2. Phase diagram of the attractive Hubbard model derived using the effective
Hamiltonian (2.5) treated within MFA, for n = 1 (upper solid line) and n = 0.2 (lower
solid line); sc lattice. Dashed lines denote the results obtained if (2.5) is restricted to H2

term.
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Fig. 3. The plots of 71 vs. |U|/t for the half-filled attractive Hubbard model obtained
using (2.5) treated within RPA (lower solid line) and within MFA (upper solid line).
Open circles and dotted line denote the results of the Monte-Carlo simulation [12] and
the Gutzwiller-type variational approach [13], respectively. Dashed lines denote the RPA
and MFA results obtained if (2.5) is restricted to H2 term and the H—F result.

the Tc exhibits a round maximum at a definite value of |U|/t dependent on n and
goes to zero at some lower value of 'UW/t. With decreasing n both the maximum
of Tc and the Tc = O point move towards smaller values of |U|/t.

For n = 1 we have also calculated the SS critical temperature using the
self-consistent random phase approximation (RPA) approach with Callen-type de-
coupling [11]. Figure 3 presents the RPA result and compares it with the MFA
prediction and with the results obtained for the half-filled Hubbard model by
applying the Monte Carlo simulations [12] and the Gutzwiller-type variational ap-
proach of Hasegawa [13]. The Tc maximum is shifted towards higher|U|/t and
the Tc = O point towards lower |U|/t with respect to the MFA prediction. A com-
parison with the results of Monte-Carlo simulations and other approaches shows
that the perturbative effective Hamiltonian (2.5) works quite well probably up to
the maximum Tc . For lower values of |U|/t the expansion becomes insufficient and
overestimates the effects suppressing Tc .

Our results suggest that low-temperature thermodynamics of the attractive
Hubbard model in the crossover regime (up to the Tc maximum ?) is governed by
the effective interactions between bound pairs rather than by the pair breaking
excitations.
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3. A system of local pairs with a finite binding energy

Let us now consider a simple model with local electron pairing taking into
account the effects of finite pair binding energy Eb .

The Hamiltonian consists of the intersite charge-exchange term Jij , determining
the pair mobility and responsible for superconducting order in the system, the
effective on-site interaction U, which contributes to Eb by reducing (U > 0) or
enhancing (U < 0) its value, and the intersite density interaction Wij. The model
corresponds to the situation when the single particle mobility is much smaller
than the pair mobility and can be neglected. Our preliminary analysis indicates
that Eq. (3.1) can also provide a reliable approximate description of an local pair
(LP) subsystem in the model of coexisting LPs and itinerant electrons (see Sec. 4),
where the effective Jij is generated by the intersubsystem coupling [1, 2].

Within the subspace excluding single occupancy of sites (U —oo) the
model is formally reduced to the standard case of hard core bosons on a lattice
(Eq. (2.1)). For arbitrary U the system may be represented by a special anisotropic
Heisenberg model with single ion anisotropy. Introducing the pseudospin operators

where B0 = 2(µ — W0 — U/2), W0 = Wq=0• {S«} satisfy the usual angular mo-
mentum algebra, {S$ } takes on four values (0, 0, ±1/2), as for s = 1 model with
doubly degenerated O value, whereas (St ) 2 = (S; ) 2 = 0, as in the s = 1/2 system.
Again XY order and AF order along z axis of pseudospins correspond to SS and
CDW orderings, respectively, and the magnetic field B (~μ) is determined by a
fixed value of magnetization: 1/N Σi (SL) = (n — 1)/2.

3.1. Charge orderings for Jjj = O

Extensive analysis of charge orderings in the model (3.1) with J = O has been
performed by us in Refs. [14-16], within a framework of a variational approach,
and most recently in Ref [17] using the cluster approximation (of BPW-type).
In the case of nn repulsion (W > 0) the system can exhibit two types of CDW
orderings: C1, inVolving the on-site pairing of electrons (n < 1) or holes (n > 1)
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(which corresponds to the alternating valence: Km, Km+ 2 ), and C2, which is the
ordering without on-site pairs (Km , Km+1). C1 can be a stable phase only if
U/(zW) < 1 and C2 if U > 0. For 0 < U/(zW) < 1 both types of order can be
realized, depending on n. At T = O there are the percolation thresholds for long
range orderings. In particular, for sc lattice the BPW calculation predicts [17]
that CDW is restricted to 0.33 < n < 1.77, for U < 0, and to 0.165 < n < 0.835,
1.165 < n < 1.835, for U/(zW) 1. At finite temperature the system exhibits

very rich multicritical behavior and the phase diagrams can include a tricritical
line, a critical-end-point and a line of isolated critical points [14-17].

3.2. Properties of the superconducting phase

In the analysis of this problem we have assumed Wiz = O in Eq. (3.1) and
adopted a variational approach which treats the on-site interaction exactly and the
pair hopping term within MFA (site-dependent). After diagonalization of a trial
Hamiltonian, the free energy functional including the orbital and paramagnetic
effects of magnetic field is obtained as [17]

Variation of Eq. (3.4) with respect to A gives the expression for the superconduct-
ing current density
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where d is a distance between the sites. It follows from (3.9) that the penetration
depth of a weak field is

where m* = h 2 /(2Jd2). For T = 0; I0| 2= n(2 — n)/4.
Equations (3.4)—(3.9) provide a complete description of the superconductiv-

ity in the model (3.1) at all temperatures within the approximation used. In the
limit U —oo, if one puts J = 2t2/|U|, these equations reduce to those derived by
Bulaevskii et al. [18] for the pseudospin model (2.1), whereas for H = O we recover
the results of Ref. [19]. The functional (3.4) and Eqs. (3.7)—(3.9) are of the differ-
ence type and it makes the superconducting properties of the model analogous to
the properties of the Josephson systems.

We have performed a rather extensive analysis of Eqs. (3.4)—(3.9) including
thermodynamics [19] and electromagnetic properties [17] for arbitrary electron
concentrations and interaction parameters. We have also studied the effects of
Gaussian and critical fluctuations [19]. The phase diagram of the model is plotted
in Fig. 4. Notice that for U/J0 < 0.5 the ground state is superconducting (SS) for
0 < n < 2, whereas for 0.5 < U/J0 < 1 the concentration range of the stable SS
phase is reduced with increasing U.

Fig. 4. Phase diagram of the model (3.1) for W,, = O. The second and first order
transitions at T > 0 are indicated, respectively, by the solid and dashed lines. Tricritical
points (TCP) are shown as a dotted line. SS is the singlet (on-site) superconducting
phase, NO — the nonordered phase. Jo = Σj J, .

The properties of the system strongly depend on the ratio U/J, directly
linked with the relative values of the pair-binding energy Eb = J0 — U and the
pair hopping amplitude tp = J. There are two well-defined regimes of the model.
The first one is the local pair limit which is realized for large pair binding energies
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Eb » tp (i.e. for U < 0). In such a case, Tc is determined by the center-of-mass
motion of pairs, i.e. by pair mobility, and the transition is to a state of dynamically
disordered local pairs. The number of pairs remains almost unchanged by the
transition. In the opposite regime, which we call the pair breaking limit and which
is realized for Eb < tp (i.e. for substantial values of repulsive U) the transition
is determined by pair breaking excitations and there are essentially no performed
pairs above Tc . Let us briefly conclude some of the properties of the system in
both regimes.
3.2.1. Tightly bound local pairs

(i) The critical temperature Tc is maximum for n = 1 (if Wij = 0) and it
monotonically decreases with decreasing electron concentration (comp. Fig. 4).

(ii) The ratio kBTc /Eb is generally much lower than unity and it decreases
with decreasing concentration and with increasing IM (U < 0).

(iii) Due to large values of pair binding energy and consequently the para-
magnetic critical field (μnHp(0) Eb » kBTc ) the major effect of the magnetic
field occurs via its coupling to the orbital motion of charged local pairs. This
yields much enhanced values of HC2 , proportionally reduced values of HC1 and
large penetration depth. It also provides an upward curvature of HC2 near Tc .

(iv) The pair density np = 2/N Σi (ni|ni|) exhibits no sharp feature as the
temperature is increased through Tc , whereas the paramagnetic susceptibility in
the normal state is strongly suppressed and exhibits a Van Vleck (or singlet-triplet)
type behavior.

Generally the properties of SS state are analogous to the superfluidity of
charged bosons on a lattice (equivalence of Eq. (3.1) with (2.1) for U —> —oo).

3.2.2. The pair breaking regime

With increasing U > O the pair binding energy and the critical temperature
are reduced and finally they become almost proportional to each other, indicating
that the pair-breaking effects determine Tc . The physics of the system in the
pair breaking regime is in many aspects qualitatively different from that in the
previously discussed case.

(i) The width of the critical region tG is strongly reduced and the Ginzburg-
Landau (G—L) coherence length ξ0 is enhanced.

(ii) The Tc vs. n dependence is nonmonotonic (even for W = 0) with the
maximum of Tc shifted from n = 1 towards lower concentrations. For small binding
energies (substantial values of U) Tc drops to zero above a critical concentration
which is reduced with increasing U (comp. Fig. 4).

(iii) The pair density np exhibits a sharp break at Tc. A fraction of single
electrons above Tc rapidly grows with increasing U, and for small binding energies
np (T > 21) becomes vanishingly small.

(iv) The paramagnetic susceptibility in the normal state is substantial and
takes a Curie-type form of temperature dependence (such a form is obvious as we
have considered the zero-bandwidth case).

(v) The ratio µBHp (0)/kBTc is of an order of unity (the Clogston limit) and
in contrast to the local pair regime the paramagnetic effects of magnetic field can
essentially contribute to electrodynamics of the system.
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Although the two extreme limits of the model are much different as far as
the physics is concerned, the evolution of thermodynamical and electromagnetic
properties between them as a function of the interaction parameters is smooth
(compare Figs. 4-14 in Ref. [19], where the plots of n p (T), x (T), Hc (0), Hp(0), ξ0
and tG versus U/J0 and n are presented).

Let us note that in our model the G—L coherence length 6) is not directly
related to the pair radius G . The latter quantity depends on the single-particle
hopping tip and the form of pairing potential and in our model of on-site pairing
with tij = 0, ξp = O. On the other hand ξ0 is a function of U/J0 or, in other words,
a function of the binding energy Eb and the pair mobility t p and it can become
appreciable if t p/Eb > 1, i.e. in the pair breaking regime. At T = O the explicit
expression for this quantity is

3.3. Superconductivity with the first order transition

A unique feature of the model (3.1) is a possibility of the first order transition
(Fig. 4) which can result in the pair-breaking regime due to a competition between
the repulsive U and the pair hopping J. Expanding Eq. (3.4) up to the 6-tli order
in |ψi| and taking a continuum limit one obtains [17]

where B = V x A and explicit expressions for the coefficients a, b, c are given in
Refs. [17, 19].

The equilibrium value ψ = ψc  is determined by the equations

If one substitutes m* = 2m = h 2/(2Jd2 ) Eqs. (3.12-3.14) take the form of the
familiar G—L equations [20], generalized by inclusion of the sixth-order term c. The
boundary conditions remain the same as in the usual case.

As follows from the analysis of the above equations the electromagnetic prop-
erties of the system near the tricritical point (b > 0) and in the case of the first
order transition (b < 0) are different from those of both type I and type II super-
conductors. Basic differences are evident from Fig. 5. In contrast to a standard
type II superconductor: (i). the line HC1 starts at a finite field, i.e. at low fields the



Fig. 5. (a) The T-H phase diagram of the model (3.1) for the case of the first order
superconducting transition at H = 0 and λL/ξ o » 1. The transition to the normal state
remains discontinuous at any H= 0. (b) TheT-Hphase diagram of a standard type H
superconductor.

mixed phase (vortex lattice) does not appear and with increasing temperature the
system exhibits a direct transition from the Meissner state to the normal state;
(ii) this transition is of the first order and occurs at the thermodynamical critical
field

where T0 is the critical temperature in a zero field and a = (8a/8T)T0; (iii) at
higher fields the structure of the phase diagram is similar to the usual case, but
the transition between the mixed state and the normal state is still of the first
order; (iv) near TCP the G-L parameter κ can vary with temperature and cannot
be considered as inherent constant of a particular system. Explicitly

and A is given by Eq. (3.10). Thus, even within the G-L region a and Ę can have
different temperature dependence.

For κ » 1 the lower critical field HC1 is derived as [21]

and in such a case the intersection point of Hc1 with He (Fig. 5a) is determined
by equating the expressions (3.15) and (3.19).
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4. Coexisting local pairs and electrons

A model of coexisting LPs and itinerant electrons was introduced by us a
few years ago [22, 23] and its extended versions have been analyzed and applied
to real materials in a large number of more recent papers (see [1, 2] and references
therein). It has been shown that in this type of systems a new mechanism of su-
perconductivity can develop. It results from the intersubsystem charge exchange,
both hybridization induced and a direct one, and leads to the SS state involv-
ing both types of particles. The physical properties of the model evolve with the
relative concentration of LPs and electrons and they can show features which are
intermediate between those of pure LP superconductors and those of BCS systems.

Up to now the studies of the model have been concentrated on the SS phase.
Below we will show the relation of the model with the magnetic Kondo-lattice
problem and point out a possibility of local charge moment compensation (charge
Kondo effect) and the CDW orderings.

The effective Hamiltonian of local c-electron pairs and itinerant a-electrons,
including only terms important for further discussion, can be written as

n(1σ  = aiσaσ , pa are charge operators of LPs defined by (2.10), .60 measures the
relative position of the LP level with respect to the a-electron band, I is the trans-
fer component of intersubsystem charge exchange and V is the density—density
interaction. p is the chemical potential depending on the total number of particles
per site

Let us assume the case of alternate (AB) lattices and tij restricted to nn and
perform the canonical "attraction—repulsion" transformation [l, 81
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whereas Eq. (4.2) and the obvious equalities 1/NΣi(σa) = 0, (nct — ni1 ) 2 = O
provide the auxiliary conditions

The transformed Hamiltonian (4.4) has the form of a magnetic Kondo-lattice
model with anisotropic contact coupling and with a half-filled band of itinerant
electrons, Eq. (4.7). In general case, there are two external fields: 2µ - acting
on itinerant electrons and 2(p - .6 0)  - acting on localized spins, such that total
magnetization per site in z-direction has the fixed value (n — 2)/2, Eq. (4.6). If
n = 2 and Δ0 = O one obtains  μ=0 and for I = V we recover the symmetric
Kondo-lattice without a field.

In our studies of the anisotropic case we have used the functional inte-
gral method within a static approximation as it provides a simple description of
the competition between RKKY interactions and Kondo singlet formation. Upon
transformation of the obtained results into the original problem one can draw the
following conclusions.

(i) For small values of I/D and V/D, where D = zt, the system can exhibit
the CDW, SS or SS—CDW orderings and their mutual stability is dependent on
the I/V ratio and the particle concentration.

(ii) CDW is stabilized by the density interaction V and is favored near the
half-filling of the bands. It involves spatial modulation of charge in both subsys-
tems. With increasing V/D the CDW transition temperature has a round maxi-
mum at a definite value of V/D dependent on n, Δ0, I/D and goes asymptotically
to zero for V/D —> oo.

(iii) Increasing I/D reduces the charge moment of LPs. For large values of
I/D the charged Kondo-lailice state with a local charge moment compensation
(isospin singlet [24]) can develop suppressing CDW and SS. At T = O the narrow
quasiparticle band appearing near EF is split by a coherence gap Ec . The Ec
disappears progressively when T increases and at high temperatures the systems
enter the incoherent charge Kondo regime and then the logarithmic regime with
the properties similar to those of a single charge Kondo impurity analyzed in
Ref. [24] .
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