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ELECTRON CORRELATION PHENOMENA
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The theory of electron correlation phenomena is reviewed and used to
interpret the transport, thermal, or magnetic properties of V203, LaNiO3

and Fe304 systems, each of which to a greater or lesser degree displays
correlation effects. A rationale is provided for interpreting the various types
of phase transitions encountered in the vanadium sesquioxide and magnetite
host systems and to show why these are altered by small compositional
variations.
PACS numbers: 71.28.-}-d, 71.30.+h, 75.10.Lp

1. Introduction

Certain classes of transition metal oxides represent systems in which electron
correlation phenomena dominate or play an important role in determining their
physical properties. We briefly review the experimental situation for the V203,
LaNiO3, and Fe3O4 systems, where one frequently encounters spectacular man-
ifestations of correlation phenomena, and then sketch out the basic theoretical
framework by which these experimental results can be rationalized. Space limita-
tions mandate a tight review pattern; for more extensive background information
the reader is referred to earlier reviews on the subject matter [1, 2].

2. The V203 alloy system

The experimental situation in the (V2_ ,I f )203 alloy system is perhaps best
summarized by the data presented in Figs. la and 2 [3], which show the variation
of the resistivity p with temperature T in a series of plots of log p vs. 1/T for
M = Cr, Ti, and ❑ (where ❑ stands for cation vacancies generated when excess
oxygen is introduced into the lattice). The measurements were carried out on single
crystals grown by the skull melting technique [4], and subsequently annealed under
appropriate oxygen atmospheres to control the oxygen/metal ratio. This work
represents an extension of earlier, less comprehensive work by the Bell group [5]
in this area; many other research groups have contributed additional insights, as
documented in earlier reviews [1, 2].

(53)
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Fig. 1. (a) Measured resistivity (p) curves for (Vi_.Crx )2O3 plotted as log p vs. 11T
for V203 with various Cr content. Note the many different types of phase transition
obtained with small compositional variations. (b) Corresponding phase diagram for the
(Vi_x Cr.x )2O3 alloy system. Hatched areas represent hysteresis loops. Dashed and dot-
ted lines represent approximate location of boundaries where high temperature metallic
is separated by second order transitions from paramagnetic metallic and paramagnetic
insulating phases. After Ref. [3].

The most striking features in Figs. 1 and 2 are the many metal—insulator
transitions (MIT) that arise simply by varying the temperature or slightly alter-
ing sample compositions. The resulting experimental phase diagram is depicted
in Fig. lb. Corresponding drastic changes are seen in virtually all other phys-
ical properties: structure, optical characteristics, magnetic susceptibilities, ther-
mal properties, and the like [1, 2]. Up to three transitions occur with changes in
temperature, depending on the nature and concentration of the element M. This
immediately raises the question as to how the V203 system can undergo such
drastic alterations in response to very small energy inputs of the order of kBT
(kB represents Boltzmann's constant). Many different answers, listed in Refs. [1-3],
have been proposed, on the basis of a very large body of disparate experimental
observations. Note also that V203 with sufficient excess oxygen or titanium sub-
stitution remains a metal down to the cryogenic temperature range. Quite likely
a combination of several schemes must be invoked for a complete accounting of
all experimental results. Nevertheless, there is one telling experimental clue shown
in Fig. 3, taken from experimental work by the Bell group [6]: heat capacity (Cp )
measurements were performed on V203 with sufficient excess oxygen or titanium
to remain metallic down to lowest temperatures. Such data, plotted as Cp /T vs.
T2 , yield a straight line, with intercept y = 90 to 180 mJ/(K 2 mole) [6]. These data
are consistent with the superposition of the Sommerfeld and Debye models for the
heat capacity of solids in the low T range. However, the electronic contributions



Electron Correlation Phenomena ... 	 55

Fig. 2. (a) Measured resistivity curves for the (V1_xTix)2O3 system, plotted as log p
vs. 1/T. The x values are a, 0; b, 0.01; c, 0.02; d, 0.03; e, 0.04; f, 0.049; g, 0.055.
(b) Same plots for the V2(1_003 system. The values are a, 0; b, 0.0045; c, 0.0055;
d, 0.0065; e, 0.0072; f, 0.0075; g, 0.0075+; h, 0.0095+. Note the reduction in transition
temperature with increasing x or y. Beyond a critical composition the antiferromagnetic
insulating phase is suppressed. After Ref. [3].

-y to the specific heat is one order of magnitude larger than that of conventional
metals such as Cu. As discussed below, such high 7 values are symptomatic of
strong electron correlation effects. The Purdue-Chicago group [3] verified the ex-
istence of a heat capacity peak in the 7-12 K range [6] which reflects the onset
of antiferromagnetic ordering in the metallic phase; this feature was extensively
studied in magnetic susceptibility measurements by Ueda et al. [7]. As also shown
in Fig. 3, the resistivity pe of V203 under sufficient pressure to remain metal-
lic varies with temperature T < 50 K as pe~ T2 , which is consistent with the
dominance of electron—electron scattering. These data show the close connection
between electron correlation and magnetic ordering effects in the metallic phase.
The corresponding situation for insulators is documented by the PM-AFI transi-
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Fig. 3. Heat capacity, resistivity, and magnetic susceptibility measurements for V 2 03

under pressure and for (V1_xTix)2O3, collected by McWhan et al. [6].

tions below 170 K shown in Fig. 1. Contrary to the earlier stance taken by ours
[3] the above results, and in particular, the reentrant metallic behavior, as well as
a large body of additional evidence, can most readily be rationalized by invoking
electron correlation effects. However, data presented later clearly show that corre-
lations alone cannot deal with all observations; lattice effects and electron—phonon
interactions also play a very important role.

Phase transitions of the type shown in Fig. 1 were originally discussed in
terms of the Mott or Hubbard—Mott model [5, 6]. Here one envisions changes in
physical properties brought about by alterations in lattice parameters or transfer
integrals. In actuality, most experiments are performed on samples of fixed com-
position by varying temperature. To deal with such measurements one would have
to render the relevant parameters (such as the intraatomic Coulomb repulsion en-
ergy U) temperature-dependent. This unsatisfactory situation was remedied by
Spałek and his school [8] by explicitly introducing temperature as a variable in
the construction of a free energy functional which is then minimized. The general
procedure is briefly sketched below at an elementary level. For a proper discussion
and for details the reader is referred to the original literature [8].

Basically, charge carriers in solids are subdivided into itinerant and localized
sets. The latter designation is somewhat misleading; given sufficient thermal en-
ergy, charge carriers can move to adjacent sites either by thermal activation or by
tunnelling. If the energy level of target site is already occupied by another electron,
additional energy is required to overcome the intraatomic Coulomb repulsion U.
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The energy of localized charge carriers occupying individual sites in a nondegener-
ate band may be taken as the zero reference level, E1 = O. The entropy S1 involves
terms of the type Σi Pi In Pi, where Pi is the probability that a representative site
is in state i; here, i indexes unoccupied, singly occupied, or doubly occupied levels.
In the most interesting case n = 1, with exactly one electron per site at T = 0, the
entropy per carrier is given by S1 = kB In2, because at every site the electron can
be in either the spin-up (a) or spin-down β) configuration. This presumes that no
magnetic ordering prevails. The free energy of the localized electron assembly is
given by F1 = El—TS,, and the reduced Helmholtz free energy per particle for an
assembly of N fermions is then (W is the band width for noninteracting electrons)

The itinerant carriers are treated as an almost localized Fermi liquid con-
stituted of quasiparticles, a feature that is justified a posteriori below. The heat
capacity is then given by the Sommerfeld relation C/N = 7T, where y is yet to be
determined in terms of y0 = 2π2kBp0(μ)/3, the linear specific heat coefficient for
noninteracting electrons. Here kB is Boltzmann's constant and p0(μ) is the density
of states (DOS) per site per spin for bare electrons with energy p at the Fermi
level. Integration yields the expression for the energy Ei/N = E0i/N + ½γT2 ,
where Eoi is the energy of the interacting itinerant electron assembly at O K.

To determine E0i Spałek and coworkers [8] postulated that Ek, the energy
of the quasiparticles with wave vector k, is related to the corresponding energy εk
of noninteracting electrons by a scaling relation of the form Ek = Φ(η)ε k, where

Φ is an as yet unknown function of the probability η=(nitni|) that any given
site is doubly occupied by electrons with paired spins; ni, is the corresponding
number operator. Then the energy of the itinerant set is given by

where f (E) E f [(E — p)/kBT] is the Fermi—Dirac distribution function for
the quasiparticles with the Fermi energy p. On introducing the scaling law
one obtains f(Φε) = f[Φ(ε -μ)/kBT] = f [(ε — p)/kBT*] = f* (ε), in which
/1 = p/0 is the Fermi energy for bare particles and T* = T/Φ is an effective
temperature. By definition, the DOS is given by Np(E) = Σ(k) δ [Φ(ε — εk)] =

Σ(k)Φ-1δ(ε — εk) = Φ-1p0 (ON , so that p°(E) = Φ-1p0;(ε). We also replace E
by Φ(η)ε in Eq. (2). This yields

Thus, the band energy of the quasiparticles has been reexpressed in terms of the
kinetic energy ε (T*) of noninteracting electrons at the effective temperature T*
through the ubiquitous function Φ(η ) which, in (3), is seen to play the role of an
effective band narrowing factor.

We adjoin to (3) the potential energy of the interacting electron assembly.
In the spirit of the Hubbard model the quasiparticles are assumed to interact only
if they are located in pairs on the same atomic site. Let U be the corresponding
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intraatomic potential energy; then the potential interaction energy per pair is given
by Ep =Uη. Accordingly, the total energy per particle is

To find Φ(η) we expand this function in powers of η: Φ(η) = f0 + f1η +
f2 ,72 + ...; for a half-filled band with random occupancy η = (½n) 2 = 1/4, so
that the expansion may be truncated as shown. The coefficients fi are found
by optimizing E 0 i and requiring E0i to coincide with certain limiting cases for
which this quantity is well established; for details consult Ref. [8]. One obtains the
following result [9], valid for a half-filled band (n = 1):

Lastly, because of the assumed form C/N = 7T for the quasiparticles, with
7 = 21r2 kBp°(EF)/3 = 21r24p$(µ)/3Φ(η), we obtain γ = γ0/Φ(η). The total
energy of the itinerant quasiparticle assembly is then given by Ei/N = f γTdT,
so that

which provides the a posieriori justification for introducing the quasiparticle model:
the free energy Fi of the interacting particle assembly at temperature T is related
to that of a noninteracting electron assembly Fi at temperature T* as shown
in (8): Fi(T*) is multiplied by the band narrowing factor, and the Hubbard poten-
tial energy U17 is added to obtain Fi(T). Having invoked the Sommerfeld approx-
imation, the use of Eqs. (6)—(8) is limited to the low temperature regime T* —> 0.
One should note that Fi(T) depends parabolically on (T/0) 2 whereas, according
to Eq. (1), F1 varies linearly with T.

At this point one can provide a simple rationalization of the reentrant metal-
lic behavior pattern encountered in the V203 system above 170 K. Figure 4
shows a plot of Fi/WN vs. kBT/W both for the itinerant (Eq. (8)) and for
the localized (Eq. (1)) models; curves a—d are parabolas with different intercepts
E0i/N = —OM + Uri = —W0/4 + Uri based on use of a rectangular density
states [RDOS]; the scheme applies for a half-filled band of energies in the range
—W/2 < E < W/2, for which the average kinetic energy is E = —W/4. Line e cor-
responds to Eq. (1). When E0i/WN is sufficiently negative, i.e. for small values of
Uη/W relative to —Φ|ε|/W the parabola always lies below the straight line. Thus,

the free energy of the paramagnetic metallic phase (PM) is always lower than that
of the paramagnetic insulating phase (PI); there is no transition. This reflects the
situation encountered experimentally in curves g and h displayed in Figs. 2a and
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Fig. 4. Plot of Fi/WN vs. kBT/W for reduced free energies as specified in Eq. (1) for
localized carriers and in Eq. (8) for itinerant quasiparticles. Here W is the band width
for noninteracting electrons and U is the intraatomic electron repulsion energy. Note
that the intercept for the parabolic curves becomes progressively more positive as U/W
increases.

2b respectively. As U/W increases the intercept becomes less negative and the
parabola first touches the straight line at one point and then intersects the latter
at two points (JK or LM in curves b and c in Fig. 4) that become increasingly
separated with increasing U/W. Here the PM phase (parabolic curvature) has a
lower free energy than the PI phase (linear variation) at the lowest and highest
temperatures, but the reverse holds at intermediate temperatures. This situation
reflects the regime of reentrant metallic behavior encountered above 180 K (curves
5-12 of Fig. 1) where the PM —> PI --> PM' sequence of transitions is seen. As
U/W increases further the second intersection point moves to inaccessibly high
temperature; only the PI —> PM'transition is encountered above 180 K (curves
1-4 of Fig. 1).

We return to Eq. (8); Fi/N is seen to contain the extrathermodynamic vari-
able η which may now be determined by imposing the minimization constraint
(aFi/aη) = 0. Straightforward manipulations yield the optimized expression for
the probability of double occupancy of a given site to terms of order T 2 (n = 1):

which is the optimized counterpart to Eq. (8).
Note that the Sommerfeld expansion applies only in the limit of low tem-

peratures. We thus ignore the difference between µ(T) and µ(0) E p0. We can
then determine the PM—PI coexistence boundary by equating the corresponding
partial molal free energies: Fl/N = Fi/N. On introducing Eqs. (1), (8), and (10)
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one obtains a quadratic equation in kBT/W which may be solved for

Plots of kBT/W vs. U/Uc lead to a retrograde curve of the type shown in Fig. 5a.
As shown elsewhere [10], the nature of these curves is not very sensitive to the
choice of the DOS, p0(ε). Figure 5a is based on the use of the rectangular density
of states (RDOS) p0 = 1/W for —W/2 < ε < W/2, and O for |ε| > W/2, where
p0 is the DOS per site per spin.

Fig. 5. Phase diagram for a correlated electron as manifested in the V2 03 host system.
(a) Plot of reduced temperature vs. reduced intraatomic electron interaction energies,
as specified by Eq. (12) with a RDOS; magnetic ordering effects are left out of account.
The points JK, LM correspond to the points so labelled in Fig. 4. (b) Phase diagram
when magnetic ordering effects are taken into consideration; see text.

It should be noted that the curve displayed in Fig. 5a was truncated both at
the top, where it began to turn over, and at the bottom, where it moved into the
negative number domain. Both problems arise as a result of the approximations
inherent in the theory. A more sophisticated two-fluid approach [11] avoids these
difficulties; the curves are automatically truncated, as is documented in the original
article.

One must now address the effects due to antiferromagnetic ordering at low
temperatures. This is needed to account for the transitions displayed in Figs. 1-3
below 180 K, because the low temperature phase is an antiferromagnetic insu-
lator (AFI). The relevant theory is rather involved; for details the reader is re-
ferred to other sources [2, 13]. Comparison of the Gutzwiller approach [9, 12] with
Ref. [13] shows that in interacting electron systems charge carriers may be sub-
divided into localized and itinerant sets. In such a two-fluid model represents
as well the fraction of itinerant carriers. Only the portion 1— of the correlated
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metallic system (U < (Uc)is affected by the magnetic exchange effects. The lat-
ter are governed by the exchange constant J = (W2/Z 2 U)(1 — Φ) where Z is
the number of nearest neighbors to a given site. In the localized insulating phase
(η =Φ = 0) this reduces to J = 4t2/U,wheretis the appropriate transfer integral.
The general Hamiltonian operator now takes the form [13, 141:

where Si, Si, are the spin operators for atoms of type j, j' on sublattices A, B
respectively, j and j' being nearest neighbors; ηj=  njnj.

The Hamiltonian (13) may be diagonalized by the Bogolyubov technique.
The division of the lattice into two parts with exclusively spin-up and spin-down
orientations yields a split band configuration [14] that results in a ground state
reduced energy of the form [13, 14]:

for a RDOS format. As Φ —>0, η —>0 one converts from a Slater band insulator
to the localized Mott insulator. The stability limit on the phase diagram may be
determined by the coexistence condition Fm =E m,  at low temperatures where the
magnetic phase transition is encountered one assumes that FMEM, because spin
wave contributions (— T4) tend to be small. The reduced transition temperature
is then specified by

The final phase diagram for the (Vi_,Cr x )2O3 system is shown in Fig. 5b. The di-
agram is based on use of the RDOS and on the parameters µm = 1µB, kBON/W =
JZ/4W = 0.023 and 0.031 for U/W = 1.65 and 2 respectively; W = 1 eV. The
inset shows the experimental phase diagram, the hatched areas delineate hysteresis
effects. Arguments detailed elsewhere [11, 13] show that U/W should scale as x
in (V1_ x Cr)2O3. One sees the resemblance between calculated and experimental
curves. In the present example we find that a tricritical point (TCP) is encountered
under conditions where the PM, AFS/AFI (antiferromagnetic slater/antiferromag-
netic insulator), and PI (paramagnetic insulator) phases coexist. More specifically,
as kBT/W increases one finds: (i) for 0 < U/W < 1.491, only the AFS —> PM
transformation; (ii) for 1.491 < U/W < 1.517, the AFS/AFI —> PM —> PI — PM'
transition, which includes the reentrant metallic behavior; (iii) for U/W > 1.517,
the AFS/AFI —> PI transformation, with a subsequent supercritical transforma-
tion to the more nearly PM' configuration.

All of the various types of phase transitions encountered experimentally in
the V2O3 system have thus been accounted for.

The above presentation should not obscure the fact that several important
issues have not been addressed: the PI —> PM' phase transition is always grad-
ual, contrary to. the abrupt change predicted by the above theory; also, enormous
hysteresis effects (of the order of 50 K) are present at the PM —> PI phase transfor-
mation. These phenomena clearly indicate that lattice effects cannot be ignored,
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which point has been repeatedly stressed by ours [3]. The role of the lattice has
not yet been incorporated into the Spałek theory. Furthermore, within 10%, the
entropy of the PM --> AFI transition can be accounted for by the standard relation

ΔSv =Rln(2J ± 1), showing that magnetic ordering effects are largely responsi-
ble for this particular low-temperature transition [15]. Nevertheless, it is clear that
electron correlation phenomena do play an important role in governing the phase
transitions in the V203 systems.

3. LaNiO3 as an example of a correlated metal

LaNiO3 serves as a prototype example for displaying properties of a corre-
lated metal. Although no single crystal measurements are available extensive sets
of measurements on polycrystalline materials are generally in good quantitative
agreement [16].

The variation with temperature in the resistivity pl of sintered bars is shown
in Fig. 6a: below roughly 60 K, pl = p0 + AT 2 , with p0 = 0.5 mΩ • cm,
A = 0.034 μΩ•cm/K2 . The p0 value likely is higher by one order of magnitude
than that which would be measured in a single crystal, but even the extrapolated
value indicates that the material is a poor metal. The pl-  T2 dependence is gen-
erally interpreted in terms of the Baber—Landau scattering of electrons that form
a Fermi liquid. The large value of the coefficient A confirms that the electron scat-
tering mechanism predominates at low temperatures and that correlation effects
in LaNiO3 cannot be neglected.

The magnetic susceptibility (x) variation with T obtained by the Purdue
group is shown in Fig. 6b; the inset is a greatly expanded x plot in the range
above 100 K. These data can be fit by an expression of the form x(T) = x(0) —
aT2 -F C/T, with x(0) = 5.1 x 10 -4 emu/mole, a = 2.9 x 10 -½ ° emu/K 2 mole,
C = 3.4 x 10 -3 emu K/mole. As described below, the first and second terms
characterize a slightly T-dependent Pauli paramagnetism, while the last term rep-
resents the Curie law with a small Curie constant. Whether the latter arises from
residual impurities or is intrinsic is not known. However, the x—T variation for
T < 20 K cannot be quantitatively accounted for by the above relation. Lastly,
Fig. 6c exhibits heat capacity measurements [16] in the range 0 < T < 10 K; these
can be fit to the relation Cp = γT +β'T3+δT3 In T, with γ = 13.8 mJ/mole K2 ,

β' =5.8 x 10-5mJ/K3mole, δ=0.12 mJ/K3mole. The first term, recognizable
as the Sommerfeld contribution, is substantial, but it is smaller by a factor of three
than that of V203 under pressure. The third term accounts for spin fluctuations
[17] that produce a contribution of the type δT3 1n(T/Tsf). The —ST3 ln Tsf term
has been combined with the Debye lattice contribution βT3 to yield β T3 in the
second term. This example shows, incidentally, that β' can be quite small or even
negative if the characteristic spin fluctuation temperature is substantial.

The theoretical analysis of the magnetic susceptibility requires a generaliza-
tion of the central ansatz Ek = Φεk; namely, in an applied magnetic field H the
quasiparticle energy for state k is given by Ekσ = Φo (η)εk — σgµBH/2, where

σ= ±1is the spin variable,gis the Lande factor, and µB is the Bohr magneton.
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Fig. 6. (a) Temperature dependence of the resistivity of LaNiO3 ceramics; below 50 K
p ti T2 . (b) Temperature dependence of the molar susceptibility of LaNiO 3 in an applied
field of 10 kG. Inset shows the susceptibility variation at higher temperature on a greatly
expanded x scale; the dashed curve represents the theoretical fit. (c) Low-temperature
specific heat of LaNiO3. The curve represents a fit to the relation C/T = γ +β 'T2

+δT2InT.Data reported by the Purdue group; after Ref. [16].

Using the above relation the free energy of the quasiparticle assembly is given by

where fko is the Fermi—Dirac function written out below. The specification of the
band narrowing factor in the presence of a magnetic field requires a lengthy analysis
[12, 18] which is beyond the scope of the present review. For small magnetic fields
one obtains

where m = (ni — ni) is the average magnetic polarization per site.
Equation (16) may be converted into a useful form by using arguments sim-

ilar o those that led to (8); this involves use of the Sommerfeld expansion which
applies only in the limit T --f O. Additionally, we introduce the expression for the
work per site in magnetizing the quasiparticle system. This quantity is given by
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where it is established below that x(T) = xo (T*)/Φ(η). On putting these results
together one finds that [19]:

Equation (19) which is a generalization of Eq. (8) looks deceptively simple.
One must actually specify several quantities for use in this relation:

(i) The DOS required in ε is given by p°(E) = p0(ε)/Φ(η, m), as before.
(ii) The Fermi—Dirac distributions function becomes

wherein H* = H/Φ, T* = T/Φ, μH = μH/Φ, ε=E/Φ. For small applied
magnetic fields one may write

which indicates, incidentally that the magnetic susceptibility of an interacting
particle assembly at temperature T is related to that of the free electron assembly
at temperature T* by the ubiquitous factor Φ(η,m). The above verifies a claim
made in conjunction with Eq. (18).

(iv) The Fermi level is found via the constraint

(v) The required band narrowing function Φ(η, m), is specified by Eq. (17).
Equation (19) must now be optimized by imposing the requirement that

8F/8η = 0. This procedure yields an expression for the optimal double occu-
pancy, Tlopt , under the particular boundary conditions that have been imposed.
The resulting expression is then substituted in (17) to obtain Φopt =Φ(ηopt). To
simplify matters Spałek and coworkers worked in the low temperature approxima-
tion: they introduced the general purpose integral Q = 2 f g(ε)f(ε)dε, where the
function g is dictated by the quantity of physical interest, and the integral is then
expanded in ascending powers of T, using conventional techniques (see e.g. [20]).
In the original work this derivation was carried through up to powers of T 4 , but
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in the interest of simplicity only the terms in T 2 will be retained here, which is all
that is required for the subsequent development.

We first consider the case of zero applied magnetic field (m = 0) for a
nondegenerate half-filled band (n = 1). The condition OF/aη = O is applied to
Eq. (19), together with the expression Φ / 8η = 8 — 32η obtained from Eq. (17)
with m = 0. This procedure leads to the following set of results:

We note that both the contribution of charge carriers to the heat capacity as
well as their effective masses become very large as U ->Uc,i.e., close to the
metal—insulator transition. It is this feature that accounts for the sizeable γ values
reported in the V2O3 alloy system.

We next consider the magnetic susceptibility. We must now minimize the
full functional, Eq. (19), with respect to ii, in the limit of small in. The procedure
is similar to that discussed in conjunction with Eqs. (25) but is more complex and
can only be sketched out here. As a first step, one uses Eqs. (22) and (24), in which

μ*H=μH(T*, H*) = μ(T*) +Δµ(T*, H*)is expanded in powers ofgµBH*;use of
Eq. (24) permits Δμ to be identified. One then determines the DOS by a Taylor
expansion and one finds x via Eq. (23) to obtain

where p = p0 and its derivatives are to be evaluated at the Fermi energy.
Equations (29) and (17) are then introduced into Eq. (19) and the resulting

full functional is subjected to the constraint OF/Oη = O. One then obtains for
small m the following expression for the optimized double occupancy
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and for the corresponding band narrowing factor

One should note that ηoft and ΦOoptdepend on m2and that these quantities appear
in every term of Eq. (19). For this reason the susceptibility must be determined
by use of Eq. (19) rather than being specified by the simple scaling procedure
involving Eq. (29).

On now substituting (29) and (30) into (19) and differentiating the resultant
twice with respect to the magnetic field one obtains (once more, p = p0(μ)):

in which B is a very complicated term involving p and its derivatives, U, Uc , I, Φ0 ,
and a 2 . The above expression contains S, the renormalized Stoner factor, given by

Ordinarily BT2 < 1, so that in zero order one obtains a temperature-inde-
pendent magnetic susceptibility x0/00S, which is obviously related to the Pauli
paramagnetic susceptibility of uncorrelated metals x0 - 2(gitB) 2 p• It is seen from
Eq. (31a) that x can grow without limit under two possible circumstances: (i)
I —> 1 in the function O0; (ii) pU(1 + I/2)/(1 + 1) 2 — 1, which leads to the
vanishing of the Stoner factor S. In the first case one encounters the Mott-Hubbard
transition to a localized moment configuration; in the second case the system
undergoes a magnetic phase transition. If the DOS at the Fermi energy is large,
(ii) precedes (i), otherwise the reverse holds. It should be noted that for a RDOS
with p = 11W, pU = 2I, one finds S = (1 + I) -2 > 4 > 0, i.e. the RDOS is
not large enough to induce a magnetic transition. In general, both the localization
factor 00-1 and the renormalized Stoner factor S-½ contribute to an enhancement
of the magnetic properties.

We are now in a position to apply the above theory to an interpretation
of the data for LaNiO 3 . Namely, we set y = 13.8 mJ/(mole deg 2 ) and x =
0.61 x 10 -3 emu/mole to determine the ratio (which is the inverse of the so-called
Wilson ratio)

as taken from Eqs. (27) and (31a). This leads to a value S = 0.31; one sees that
the system is still rather far removed from a magnetic instability. For a RDOS,
for which S = ? +1) -2 , one obtains the ratio I = U/UC 0.79, again rather far
removed from an instability edge. The effective mass as specified by Eq. (28) leads
to a value m*/mb = 2.6. From Eq. (27) one then obtains the RDOS value of p
1.2 (eV site spin) -½ , which yields W = 1/p = 0.87 eV and U = 2IW = 1.67 eV.
The above results indicate the LaNiO 3 is a relatively narrow-band metal with a
significant but not exceptionally large intraatomic Coulomb interaction.
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4. The magnetite, titanomagnetite, and zinc ferrite system

The magnetite system Fe3O4 has been the object of considerable study be-
cause of a phase transition that occurs near 120 K, the so-called Verwey transition.
The characterization of this phase transformation is the subject of the present sec-
tion. Most of the early work is superseded by the recent recognition [21] that small
changes in the oxygen to metal ratio, represented by δ  in the formula Fe3(½_004
(-0.0005 < 6 < 0.012), completely alter the characteristics of the material. Fig-
ures 7 and 8 display typical changes in heat capacity and electrical resistivity pc

Fig. 7. Comparison of heat capacities for two samples exhibiting Verwey transitions
of different order: δ = 0.00021, first-order transition, and δ = 0.0049, second- or
higher-order transition. After Ref. [21].

Fig. 8. Variation of electrical resistivity (p) with temperature for Fe30—e) 04 single

crystal specimens: δ  = —0.00053 (a), —0.00017 (b), 0.00021 (c), 0.00069 (d), 0.0017 (e),

0.0035 (f), 0.0050 (g), 0.0068 (h), 0.009 (i). After Ref. [21].
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Fig. 9. (a) Composite plot of the variation of resistivity with temperature near the Ver-
wey transition for zinc ferrites Fe 3 _yZn"O 4 with 0 < x < 0.035. (b) Detailed comparison
of electrical property of dilute titanomagnetites and nonstoichiometric magnetite near
the Verwey transition; note the correspondence y = 36. After Ref. [21].

encountered in specimens of different compositions 6. In Fig. 9a and 9b are shown
examples of resistivity changes near the Verwey transition temperature for zinc
ferrites samples of composition Fe3„Zn„O4 i and for the titanomagnetite series
Fe3_ y Tiy O4 [21]. With increasing 8, x, or y there are striking alterations in the
nature of the Verwey transformation: it changes from first order to higher order
and ultimately disappears. Correspondingly, these variations are authenticated by
discontinuities in pe and by a latent heat of transition in the composition range
—0.0005 < δ < 0.0039 =δc . An abrupt change in the derivative p'e(T) and no latent
heat is encountered in the range 6, < 6 < 38c . The electrical properties of nonstoi-
chiometric magnetite, zinc ferrites, and titanomagnetites match very closely, with
the correspondence 3δ = x = y. Furthermore, there are no resistivity anomalies
for δ = x/3 = y/3 > 3δ C . This collection of regimes is summarized in a plot of the
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Fig. 10. Variation of Verwey transition temperature against sample composition for
dilute titanomagnetite, zinc ferrite, or nonstoichiometric magnetite. The regions of first-
and higher-order transitions are clearly delineated. Note the correspondence x = y = 38.

Verwey transition temperature Tv vs. 36 = x = y in Fig. 10, where the first and
higher order transformation regimes are clearly evident. It is remarkable that very
small changes in sample composition can bring about such drastic alterations in
the nature of the thermodynamic properties of the material.

The challenge here is to find a single formalism that can handle the first
and higher order transition in a unified scheme. At a very elementary level this
may be done [22] through the recognition that magnetite and its dilute Zn and Ti
based derivatives form an inverse spinel of the type (Fe 3+)[Fe2+, Fe3+]O4 in which
( . .) and [ ..] denote tetrahedrally and octahedrally coordinated interstices in the
cubic oxygen framework. In first approximation, the electrical characteristics are
governed by the electron interchange involving "filled" [Fe 2+] sites containing six
d electrons and "empty" [Fe3+] sites with five d electrons, both interstices being
octahedrally coordinated. The Fe 3+ configuration will be considered to form the
vacuum state, while the sixth electron is free to move. The energetically most fa-
vorable situation is that in which every Fee+ is surrounded by Fe 3+ and vice versa,
but this is also the configuration of lowest entropy. Furthermore, the Fe2+/Fe3+
balance in the octahedral sites is disturbed either by introduction of excess oxygen
(producing more Fe3+ at the expense of Fee+ to preserve electroneutrality), or by
substitution of Zn2+ for Fe3+ in the tetrahedral interstices (producing the same
effect), or by incorporation of Ti4+ in the octahedrally coordinated interstices
(generating Fee+ at the expense of Fe3+ to maintain electroneutrality).

In these circumstances it is expedient as a rock-bottom approximation to
replace the magnetite system by a collection of site pairs (o—o), also called "bonds" ,
which may be in the occupation states shown in Table. The lowest energy state
is that in which one electron is strictly localized at one of the two o-sites through
a small-polaron trapping mechanism involving a lattice deformation around the
self-trapped charge carrier. This deformation incurs a lattice distortion of the type
involved during the transition from the cubic spinel (T > Tv) to the monoclinic
(T < Tv) configuration. Such a state is schematized in Fig. 11a. The corresponding
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TABLE
Configurations of site pairs and sites.

There are ZL/2 bonds (site pairs) and (1 — Z)L sites to represent the
collection of L octahedrally coordinated interstices with Z = 4 nearest
neighbors in magnetite.

Fig. 11. Schematic diagrams of energy states of the bond figure assembly. (a) Ground
state energy; the electron ® is in a trapped state. (b) Resonant state which is a precursor
to directed drifts in an applied electric field; • represents a mobile electron. (c) Two
electrons in adjacent octahedrally coordinated interstices; the mobile charge carriers
can jump to adjacent empty sites.

bond configuration is designated by ®—o, while the interchange to the o—® site
is inadmissible. As shown in Table, the corresponding probability and energy is
given by ,Q0 and εCA respectively. A first excited state is generated by promoting
charge carriers to the resonant configuration shown in Fig. 11b; here the carrier
can resonate between two equivalent states depicted by • — o and o — • respectively,
with probabilities 2β1 and energies εBA = εAB • The excess carrier associated with
Fee+ ions forms the precursor state to directed drift under an imposed electric field.
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The state of highest energy is depicted in Fig. 11c as arising when two electrons
occupy adjacent octahedral sites; such carriers cannot move toward each other but
they can proceed to other adjacent empty sites. This state is represented by •—e
and occurs with probability β2 and has an associated energy ε BB.

A total of ZL/2 bonds are required to represent the octahedrally coordinated
site pairs in the Fe304 lattice; here L is the total number of sites and Z is the
number of nearest neighbors. This collection of bond figure assemblies already
contains a total of ZL individual sites, whereas the actual number of such sites
is L. Accordingly, one introduces an assembly of (1— Z)L additional single sites so
that the overall total in the representative assembly matches the actual number in
the lattice. The individual site occupation states are shown schematically, together
with their associated probabilities and energies, at the bottom of Table. The three
possibilities involve a fraction γ0 of ® sites occupied by electrons trapped through
lattice deformations, with a corresponding energy Cc. A fraction γl of individual
sites (o) is unoccupied; this quantity is determined by the composition of the solid.
A fraction γ2 involves sites (e) containing mobile charge carriers associated with
an energy CB; the density of these carriers in principle is accessible via the Seebeck
coefficient measurements.

This extremely simple model will be shown to suffice to handle all the com-
plexities of the magnetite systems; improved treatments may be devised but they
involve a much greater number of adjustable parameters.

The probabilities listed in Table are not independent. One must take into
account the normalization requirements
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for the bond figure assembly, and by

for the site figure assembly.
The Helmholtz free energy, F = E—TS for the representative assembly may

be determined from Eqs. (34) and (35). Equilibrium constraints are imposed by
demanding that 8F/812 = óF6/8,02 = O. One must recall that N½ and ,00 are also
functions of 8,. We find

The subsequent analysis is much simplified by considering two special cases.
The first of these arises when C = O under the sufficient condition that U —> oo in
Eq. (37a). Equation (37b) shows that we can achieve this requirement by setting
N2 = 0, so that N1 = 72 and ,60 = 1 — 272 . The free energy of the bond figure
assembly is now given by (Pb E Fb/L):

We next introduce the order parameter t/i = 2,01 to obtain

Optimization with respect to via 8Fb /81b = O yields the equilibrium condition

For the special case where one adopts a linear variation E(b) = E0 — ? a^
one obtains

One should note that Eqs. (39) and (40) provide a rationalization of the
relationship first postulated by Strassler and Kittel [23] to deal with first order
phase transitions; g½/g 0 = 2 in Ref. [23].

Equation (40b) may be solved numerically for b = 0(T; c0 , a) once the
microscopic quantities c0 and a have been specified. The program of data fitting
is discussed elsewhere in detail [24] and will not be repeated here; basically, one
imposes conditions that must be met by the function Pb and its derivatives at the
transition point. Numerical calculations of 0(T; c0 , A) are displayed by curves a—f
in Fig. 12; one should note the discontinuity in at T = Tv, symptomatic of first
order transitions.

As the opposite extreme we consider the case C = 1, which corresponds to
complete randomization, under the sufficient condition U = 2E, U' = E" = O
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Fig. 12. Plots of order parameter z/i versus temperature T for the 6 values indicated in
the figure. Full curves: first-order regime. Dashed curves: second-order regime.

in Eq. (37a). One now obtains β2 = γ3, ,βl = γ2 (1-γ 2 ),β 0 = (1-γ 2 )2 and a
Helmholtz free enemy of the form

On imposing the requirement „1b/872 = O and introducing an order parameter
zG E 72 one obtains the equilibrium condition

which again may be solved for ψ= ψ (T; ε0, a); numerical calculations are shown by
curves g and h in Fig. 12. The break in the slope ψ (T) is characteristic of the occur-
rence of second order transitions. Again, Eq. (42b) rationalizes the Strässler—Kittel
relation for second order transitions. The theory of Ref. [23] shows that the form
of (42) is a sufficient condition for the occurrence of a second order transition.

The very simple formalism sketched above is thus capable of rationalizing a
large body of information relating to Fe3(1_δ)O4  and by extension, to Fe3_xZn xO4
and to Fe3_ yTiy O4. One can in fact test the adequacy of the approach by the
following fairly stringent comparisons with experimental data. The entropy of the
first order transition may be calculated by substituting for = 2/81 the particu-
lar values ψ2 and ψ1 read off from Fig. 12 just above and just below the Verwey
transition discontinuity and inserting these quantities into the multiplier of kBT
of Eq. (39). One finds Sb = —kB[ψ2 ln ψ2 -ψ1 1110½ -F-(1 — 02)X 1n(1— 02) —
(1 — 0½)1n(1 — ψ) + (O„ — 02) In 2]. This leads to the solid curve shown in Fig. 13;
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the open circles are the experimental data obtained from the latent heat measure-
ments. A second facet involves the determination of the Seebeck coefficient a.

Fig. 13. Calculated variation of the entropy of transition Sy, in units of R In 2 at T = Tv,
with 6. Circles represent experimental data cited in Ref. [21].

Fig. 14. Change of Seebeck coefficient with temperature for Fe304, Tv = 121.1 K. Solid
curve: theory. Dashed curves: experimental results. For high-purity material cooled in
a magnetic field the agreement with theory is very good; no adjustment of parameters
was required.

As is well established, as long as the kinetic contributions to a is small, as is the
case for nearly localized carriers α = —μ E/kBT, where µE = (8Fb/8γ2)τ — E
is the chemical potential relative to the transport level at energies E above the
ground state εCA . Lack of space precludes a discussion of the requisite steps which
are detailed in Ref. [24] for the determination of μ E from the data; no additional
parametrization is needed. Calculations lead to the variation of a with T for Fe3O4

which is given by the full curve in Fig. 14, while the experimental data are shown
by the dashed curve. The agreement between theory and experiment is satisfac-
tory. Third, one may compare the resistivities. Here one needs to postulate the
variation of resistivity with temperature in the limit of a small polaron model. One
must fit the experimental results by introducing a third parameter that anchors
the calculated resistivity to one experimental value by the procedure specified in
Ref. [24]. This adjusts the magnitude of the resistivity discontinuity at T = Tv.
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Fig. 15. Variation of log p vs. 1/T for Fe3 O4 , Tv = 121 K. Solid curve: theory. Dashed
curve: experimental results.

The ensuing T dependence is fixed by the current model. Theory and experiment
are compared in Fig. 15; again, the agreement between calculated and observed
resistivities is very good.

5. Conclusion

In summary, three rather different systems have been explored for which
electron correlation phenomena in different degrees have been invoked for a ra-
tionalization of a large body of experimental data. The exposition is meant to
be didactic in showing how to proceed when one-electron theories are no longer
adequate to cope with experimental findings.
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