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We characterize the principal difference between the pairing induced
by the kinetic exchange interactions for the Fermi-liquid and spin-liquid
phases. In the case of hybridized electrons the Kondo-exchange induced pair-
ing is invoked, whereas for a single narrow-band case kinetic exchange is
responsible for the spin singlet pairing. The former interaction is applied to
heavy-fermion systems, whereas the latter is employed to the high tempera-
ture superconductors. The current situation concerning the applicability of
our theoretical models is briefly and critically assessed.
PACS numbers: 71.28.+d, 75.10.Lp, 74.70.Vy

1. Introduction

The aim of this paper is to overview in the simplest terms the difference
between the real space pairing among electrons in the cases with Fermi-liquid and
statistical-spin-liquid normal states chosen as reference states. The discussion is
related to the question of the nature of the superconducting state in heavy-fermion
and high-Tc systems. Each of these systems can be regarded as a metallic state
close to the corresponding localized Mott state: rare-earth (or actinide) metal with
localized moments and the Heisenberg antiferromagnet, respectively.

Heavy-fermion systems are regarded in the low temperature (T < 10 K) limit
as an almost localized and strongly anisotropic Fermi liquid composed hybridized
atomic (4f or 5f) and itinerant (d—s) states forming very heavy quasiparticles.
The high-temperature superconductors containing CuO 2 planes are considered as
either Fermi liquid [1] or as quantum [2] or statistical [3] spin liquids. In this paper
we provide the arguments to the latter [4-7].

By real space pairing we understand the pairing induced by the kinetic ex-
change interactions among strongly correlated electrons in a narrow band [8], which
reduce in the Mott insulating limit to the Anderson antiferromagnetic exchange
[9]. Also, this interaction in the case of hybridized metallic systems takes the form

(39)
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of the Kondo exchange [10], which in the localized-moment limit reduces to the
Schrieffer—Wolff form [11]. Both of these interactions are discussed below. The hy-
brid pairing induced by the Kondo exchange leads to a simple characterization of a
paired state for heavy fermions, whereas the kinetic exchange in a two-dimensional
spin liquid provides basic features of a high-temperature superconductor [12].

2. Real space pairing in a narrow band

The concept of real space pairing was invoked by Anderson [2, 13] who pro-
posed to represent the antiferromagnetic exchange interactions via spin-singlet pair
operators. As a starting point in that approach one takes the Hubbard Hamilto-
nian for strongly correlated electrons in a narrow band transformed [10] to the
form in which the double occupancies on the same site have been projected out
and an intersite spin—singlet pairing included explicitly, namely

The first term represents the band energy with tij being the hopping integral,
and biσ = at (1 — ni_σ) is the creation of an electron on site i and with spin
provided no other electron is present in the same state. The second term represents
second order processes t 2/U, where U is the magnitude of intraatomic Coulomb
interaction, and

is the singlet pair creation operator in real space, i.e. on the pair of sites (i, j).
Note that the second term contains both pair binding (the part B ijBkj ) as well
as the pair hopping from the pair of sites (kj) onto (ij) for k # i (the three-site
part [14]).

This model is difficult to solve for an arbitrary band filling, partly because
the one-particle operators {biσ} do not obey the fermion anticommutation rela-
tion and the pair operators {Bij} do not obey the boson commutation relations.
Additionally, the two terms in (2.1) do not commute with each other and hence,
the single-particle and pair motions are mutually connected.

The simplest insight into the nature of electron states for the model (2.1)
is obtained by noting that for n -> 1 the expectation value (biσ bjσ) vanishes and
therefore, only the pairing part with i = k survives. In this limit (the Mott-insulator
limit) the intersite interaction reduces to the Anderson kinetic-exchange form, since

The principal question at this point is whether the Mott insulator in two dimen-
sions can be analysed starting from the Néel state and subsequently including
the fluctuations [15], or if one has to start from a novel, resonating-valence bond
(RVB) state. In the former case the order parameter is (St) E  ((bi||| — b |bil) ) ,
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whereas in the latter it is Δij E (Bid ). In the RVB case it evolves continuously into
a paired metallic state of the BCS type and has transition temperature Tc maxi-
mal for n = 1, a feature not observed experimentally. Instead, the superconducting
state disappears, the metal-insulator transition takes place and the antiferromag-
netic insulating (AFI) state sets in [16]. The AFI state for n = 1 is well described
by the Heisenberg model, and the AF ordered state has a 3-dimensional character.

One-hole states for the model (2.1) have been treated extensively [17]. Most
of the features of these self-trapped states have not been as yet tested experimen-
tally. Also, the nature of the ground state at finite doping and in particular, the
transition from the doped Mott insulator to the superconducting metal has not
been determined so far, neither theoretically nor experimentally.

2.1. Fermi liquid approach

The early treatments of Hamiltonian (2.1) resorted to a Gutzwiller treatment
with the second term in (2.1) added after projecting the double occupancies in
direct space. In effect, one obtains the starting Hamiltonian in the form [14]:

is the pair creation operator for fermions with opposite spins (note that the pro-
jection present in (2.2) is absent now). In the form (2.3) the starting Hamilto-
nian represents a Fermi liquid with real space pairing. The model, when solved in
mean-field approximation of the Bardeen, Cooper and Schrieffer (BCS) type leads
to a nonvanishing value of the superconducting gap Lik and a nonzero value of the
transition temperature Tc in the limit n 1 [18], which corresponds to the Mott
insulator. This is clearly a nonphysical result. The situation is not improved by
showing that with n —4 1 the antiferromagnetic state is energetically favored, since
any resonating-valence bond (RVB) state of the Mott insulator cannot have the
same properties as the BCS state. Therefore, the nonvanishing gap for the Mott
insulator demonstrates that a simple BCS theory is inapplicable to the almost
localized electrons; this is because it relies on the assumption that a stable Fermi
liquid (FL) state exists and descibes the normal state of the system. In the next
section we introduce the concept of statistical spin liquid (SSL) and later compare
the FL and SSL states.

2.2. Statistical spin liquid in two dimensions

Electrons in narrow band systems form a correlated quantum liquid, by which
we mean the state for which the average band energy |(εk)| per particle (calculated
in local-density or related approximation) is comparable or smaller than the mag-
nitude U of the intraatomic interaction energy required to change the occupancy
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of atom by unity relative to the equilibrium configuration. The question is then
how to describe the situation in which we start from a well-defined atomic config-
uration rather than from an electron gas state as the reference state (they belong
to separate universality classes). For that purpose we have proposed [3-7] the con-
cept of statistical spin liquid which bears its origin from the Hubbard split-band
picture [14] of strongly correlated electrons. In the Hubbard subband picture [19]
a single band of quasimomentum (k) states with spin a states is split into two
halves: the lower has the weight (1 — n_σ), whereas the upper has the weight
n_ σ , where n_ 1 = (n;_„) is the average spin (—a) site occupancy. In the limit
n —> 1 each subband contains N states: the lower contains only singly-occupied
(and empty) states, while the upper distant by amount ti U comprises the ex-
cited doubly occupied configurations. We have ascribed the quasiparticle states to
the partially filled subbands by postulating that in the lower subband the doubly
occupied I k||) states are excluded from the physical space, whereas the upper
subband contains only Ik||) states. In this way the volume of the Fermi surface
for electrons in the lower subband is doubled with respect to that for FL case. In
other words, the Luttinger theorem stating the Fermi volume independence on the
interaction magnitude is violated. We connect this violation to the presence of the
Mott transition as a true phase transition defining the borderline between the two
(FL, SSL) universality classes.

Before turning to the quantitative description of the statistical spin liquid we
mention the problem of the SSL stability. It is well known [20] that the Hubbard
model in one spatial dimension and for n = 1 has an insulating state as a ground
state for an arbitrary U > 0. For large number of dimensions (d oo) the phase
diagram [21] is similar to that obtained in the Gutzwiller approach extended to
nonzero temperature [22]. In view of these results, the existence of the Mott tran-
sition for any d is beyond question. The fundamental question is then what is the
nature of state with small number S E 1—n of holes in the Mott insulator, as repre-
sented by the Hubbard model above the localization threshold. We postulate that
it is the statistical spin liquid if only the hole states are not self-trapped in some
sort of spin polaron state [23]. This liquid is of metallic character and is assumed
to become a stable state at finite doping. A support for such claim comes from
the recent work of Anderson [24] who shows that for a two-dimensional system
with a Fermi surface the scattering amplitude fk|k'| is divergent for two particles
with k = k'. Hence, the states 10 1) should be projected out from the physical
space. It has been shown [16] that the SSL state evolves continuously into the
Mott insulator as 6 —> 0. The validity of the SSL concept to high-temperature su-
perconductors is thus related in a crucial way to the nature of the metal—insulator
transition taking place for S 0 in two-dimensional systems. This is because the
hole self-trapping competes with a spin liquid formation near the half-filled-band
situation. On the other end, for small number of electrons, the Fermi liquid state
must be stable as the interaction (~ n 2 ) becomes much smaller than the kinetic
energy (~ n) of the particles. Hence the SSL state has a limited range of stability
(if any). SSL state is realized in one-dimensional model systems for n < 1, which
are described by the Hubbard model [25]. We postulate the validity of the SSL
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concept also in two spatial dimensions.
To characterize quantitatively the statistical spin liquid one has to transform

(2.1) to reciprocal (k) space [4]. As a result one obtains

being the Fourier component of the local spin operator Sr = biσ bi_ σ . The operator

btk  describes the quasiparticle propagation in k space is composed of three

parts: (i) the projected fermion part akσ (1 — nk_ σ ); (ii) the part responsible for

the Hubbard intersubband transitions at nk_ σ (this vanishes in the ground state
configuration); and (iii) the spin-flip-associated-hopping part. Here, we are not
interested in a detailed structure of the interaction between quasiparticles. This is
because we are interested only in obtaining the simplest (mean-field-like) picture
of the paired state, where the scattering processes are suppressed by binding into
pairs and a subsequent formation of a condensed state. In such situation we take
in the following Okσ =

 αkσ, (1 — nk_ σ ) . Making this approximation and choosing
only the pairing part with the resultant center-of-mass momenta q = q' = O one
obtains (2.5) in the form

This Hamiltonian has the form of the BCS Hamiltonian, with a separable pairing
potential Vkk' = —4εkεk'/U. However, the projected operators have nonfermion
anticommutation relations

The nonfermion nature of the operators bkσ. and bkσ leads to principal dif-
ferences with the BCS approach, as demonstrated below. For example, the Bo-
golyubov,transformation diagonalizing (2.7) in the mean field (BCS) approxima-
tion is not applicable. Also, the normal properties will be different from those for a
Fermi liquid, as one can show explicitly by calculating the statistical properties of
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the SSL in the normal state. In that state one can ignore the pairing part and solve
the single-particle part utilizing the anticommutator Green-function formalism [26]
to obtain the single-particle propagator in the form

where nk-s E (akakσ)• One notices two features. First, the spectral density
function Ak = 1 — nk_σ is not constant and equal to unity. Second, by applying
to (2.8) the fluctuation-dissipation theorem one obtains the following distribution
function:

This is a correct Fermi-Dirac distribution, in which the first factor (1/2) expressed
the projection of double occupancies 1141,) and, hence, the reduction by half of the
number of available states. The second factor (1/2) leads to the linear in T renor-
malization of the chemical potential p = μ+ kBT ln 2, if we rewrite the large
fraction part in (2.9) as in the Fermi-Dirac form. This linear part in p = μ(T) is
absent for ordinary fermions and has two far reaching consequences in the follow-
ing sense. Firstly, the reduction by half of the available |kσ) quasiparticle states in
the subband leads to a filled-band configuration for n = 1, which now represents
the Mott insulating state. This filled-band state can become magnetic since double
occupancies are excluded in this representation. In fact, a stable antiferromagnetic
phase is obtained close to the half filling, as discussed in a separate contribution
to this conference [27].

Secondly, one can ask the question whether the spin liquid concept is in
agreement with the spectacular linear in temperature behavior of resistivity in a
wide range of temperature and for different high temperature superconductors.
It is well known [28] that the relaxation time r depends linearly on both T and
quasiparticle energy e. It is therefore natural to assume that

where A and a are dimensionless constants. Next, assuming that the relaxation-time
approximation is valid one obtains the following expression for the static conduc-
tivity [291:

with σ(ε) ~ τ(μ), where f (E) is the Fermi-Dirac distribution with the chem-
ical potential replaced by µ. Making the low-temperature expansion for (2.11),
a straightforward analysis leads to the temperature dependence of the electrical
conductivity
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where a0 is the lattice constant, and. B„ are the Bernoulli numbers. We see that
0 — 1 = p ~ T in all orders provided the series is convergent. The above argument
is by no means a proof of the linear (p ~T)resistivity. It merely means that the
spin liquid concept is not in contradiction with the experiment. The heart of the
problem is thus reduced to a microscopic derivation of Eq. (2.10), the procedure
which should determine microscopically the constants A and a.

The present treatment of the statistical spin liquid starts from a treatment
of electrons as independent particles, with the dispersion relation ε k. It does not
contain any band narrowing factor due to electron correlations. Nonetheless, a
straightforward calculation of the band energy EB of fermions in SSL state yields
for the featureless (rectangular) form of the density of states the result

where W is the bare bandwidth. In the limit n —> 1 the band energy vanishes and
only the kinetic exchange part in (2.9) survives, which leads again to the antifer-
romagnetic insulating ordering as a reference state. The quantity W is a measure
of the spread of the 3d states in CuO2 planes, detected in the corresponding pho-
toemission data.

Fig. 1. The Fermi surface for the square lattice with number of electrons per atom
n < 1 in case of Fermi liquid (triangles) and spin liquid (full circles). The specified
values of the Fermi energy are in units of bare bandwidth W.

Recent photoemission experiments [30] determined the shape of the Fermi
surface (FS). In Fig. 1 we have presentedthe shape of the Fermi surface for a
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two-dimensional Fermi liquid with n < 1 for a square lattice (triangles), and for
the same filling in the spin-liquid case (full circles). The hole-like Fermi surface
for the SSL case agrees with the observed results. Our very recent analysis of the
three-orbital model [31] is also in qualitative agreement with the observations.
Nonetheless, a careful quantitative analysis of the data is required and will be
reported as the detailed data of Campuzano et al. [30] become available to us.

2.3. Superconducting state of a statistical spin liquid

In this section we summarize the results for a paired state of the BCS type.
We start from (2.7) as the effective Hamiltonian with pairing induced by the kinetic
exchange. We also assume that the statistical distribution of electrons is governed
by (2.9). Concrete results are obtained for a square lattice.

A single remark concerning one specific feature of the pairing is in order here.
The real space pairing bears its origin from virtual intersite hopping processes with
doubly occupied site configuration in the intermediate state. In this respect, the
present pairing differs from that induced by an exchange of a Bose quasiparticle,
which contains retardation by its nature. Also, the real space pairing differs from
that induced by the Coulomb interaction and involving plasmon exchange, because
the latter is induced by its long-range part and engages a quasiparticle.

To solve model Hamiltonian (2.7) for the superconducting phase one can
employ the Green function formalism [26] in the Nambu representation. In that
formalism the approximation equivalent to the BCS approach is achieved by defin-
ing the Nambu operator A-k = (bkr , b- k|) and postulating the mean-field equation
in the form

where M is 2 x 2 matrix, which is calculated explicitly elsewhere [32]. Here we
only summarize the results and discuss their physical meaning. These results can
be discussed and the following headings:

1. The self-consistent equation apart from a statistical factor (1 — nk/2) has
the BCS form [12]. The quasiparticle energy is as in the BCS theory, with the gap
in the form

where Δ(T) is the gap parameter. The statistical factor (1 — nk/2) will reduce
the value of the gap by half below the Fermi surface, whereas the factor εk
leads to the solution of an extended s-wave symmetry, since for a square lattice

εk cos(kxa 0 ) + cos(ky a 0 )•
The extended s-wave symmetry of k is caused by the circumstance that

we have included the three-site terms in the kinetic-exchange part in (2.1). If the
three-site part was neglected, then the d-wave solution would appear as a possi-
bility at intermediate hole concentration. Very recent experiments [33] suggest the
d-wave as the correct symmetry of the superconducting order parameter, although
the situation is not as yet settled. From the theoretical point of view, the situation
calls for a careful analysis, whether the derivation [8] of the effective Hamiltonian
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(2.1) from the Hubbard Hamiltonian, which produces the three-site term, is equiv-
alent to the derivation of t—J model [34], which starts from a multiorbital model
reduced subsequently to a single-band case.

Fig. 2. Superconducting gap parameter L(0) as a function of the hole number ó = 1—n,
for different values of U measured in units of 21 t 1= W/4.

In Fig. 2 we display the parameter .6(T) for T = O as a function of 6 =1 — n.
Similar results are obtained [32] for the value of Tc . The superconductivity vanishes
both for n —> 1 and for n > 0.15=0.25, depending on the value of U. This character
is in agreement with experiment for La2_ x Srx CuO4. A similar solution is obtained
in the regime 0 < n < 0.15 ÷ 0.25, reflecting the hole—electron symmetry for
the statistical spin liquid. It is interesting to ask if the latter solution reflects the
situation in n-type superconductors Nd2_ x Cex CuO4. We have no answer as yet
to that question.

2. The average occupation number ńkσ for SSL will differ from that for
the Fermi fluid, both in normal and superconducting phases. This is because the
states Ik||) are excluded from the physical space and therefore, the Fermi level is
placed higher inside the band than the position for the same concentration in the
FL case. This difference in position of the chemical potential is directly related
to the Luttinger theorem violation. In connection with this one should mention
the claim [30, 33] that the measured Fermi surface topology is in agreement with
LDA band-structure calculations [35]. However, in order to make experiment and
the LDA theoretical results to agree, both the Fermi velocity and the effective
mass must be renormalized by a factor of two [30]. The problem of applicability or
inapplicability of the spin-liquid concept to the planar electron should be resolved
in the near future.
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3. The representation of high-temperature superconductivity as a paired
state for a planar spin liquid is unsufficient because of a number of reasons.
Firstly, the superconductivity encountered in high-temperature materials as a
three-dimensional phenomenon. Therefore, in order to reconcile the two-dimension-
al metallicity in the normal phase with three-dimensional superconducting state
one has to introduce an interplanar Cooper-pair hopping; such processes are en-
hanced with respect to the single-electron hopping because this process lowers
additionally the system energy relative to the normal state.

Secondly, when one compares the strength of the pairing coupling constant
J = W 2/zU, where z = 4 is the coordination number, with the spin-liquid energy
per site, which is —(W/2)(1 — n), one sees that J > (W/2)6 for n < nc , where
the critical value is nc = 2/U 0.2-0.25. This means that in the whole super-
conducting range of hole concentration the coupling constant should be regarded
as large. In other words, strong-coupling effects may be important in the analysis
of a planar superconductivity for a statistical spin liquid. The same should hold
true also for a Fermi liquid approach as the expressions for the band energy in
both SSL and FL cases coincide (the latter result is obtained in the Gutzwiller
approximation).

The reasoning above provides also a very simple and clear interpretation of
the binding induced by the real space pairing ~ t2/U. Namely, the kinetic energy
of particle in the spin liquid is reduced by the factor (1 — n)/(1 — n/2) 26
relative to independent particle motion. Therefore, the time for a hole to stand
still is Tg ti 4/26, where τB is the Heisenberg time uncertainty for a band to
form: TB =h/W. On the other hand, the time uncertainty for the electron pair to
undergo a virtual hopping leading to the kinetic exchange is T ex :s h/J = hUz/W 2 .
In the whole superconducting regime Tex > TB and hence the electron neighboring
partner binds to it before it can escape. The two time scales become comparable
for n nc. In other words, in the normal state (δ > δ) the single hole dynamics
is predominant and causes the dissociation of the pairs bound by the short-range
interaction in direct space. This dissociation would be very difficult to understand
within the pairing operating in the reciprocal space only.

3. Real space pairing for heavy fermions: the Kondo exchange

The high temperature superconductors (HTS) and heavy fermion (HF) sys-
tems represent probably the materials, which exhibit spectacular electron corre-
lation effects. Both materials represent compounds in which the active correlated
states (3d and 4f or 5f states, respectively) are hybridized with magnetically inert
(2p and d—s) states. The question is then what is the difference between the two
classes of materials? This difference is represented schematically in Fig. 3. Namely,
the heavy fermion limit represents an asymmetric Anderson-lattice case, in which
the bare atomic f level is placed close to the Fermi level. On the contrary, the 3d 8

and 3d1 ° levels in high-temperature superconductors are placed almost symmetri-
cally with respect to the bare Fermi level in the 2p band (by "bare" we understand
the level and band positions before the hybridization V and the f—f or d—d in-
traatomic Coulomb interaction U is taken into consideration). Additionally, the
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Fig. 3. Schematic representation of the electronic structure of a heavy-fermion system
(a) and a high-temperature superconductor (b).

ratio 1171 /(e f — µ) is « 1 and 1 for HF materials and HTS, respectively. There-
fore, in the HF systems the Kondo coupling is rather small and can participate
in the quasiparticle dynamics, whereas it is strong in HTS and in conjunction
with a symmetric position of 3d8 and 3d 1 ° levels leads to an effective single band
representation of the dynamics [34].

In order to derive the explicit form of the Anderson Hamiltonian a division of
hybridization processes into low- and high-energy parts is necessary [10]. In effect,
one obtains the following effective Hamiltonian with the real space pairing in the
lowest order in 1/U:

The first term represents now the band energy of uncorrelated electrons. The
second term expresses the energy of localized correlated electrons. The third term
describes the hybridization between the two subsystems, whereas the last provides
real space pairing between the two subsystems, with

being the pair creation operator of |fi|) state and the conduction lcml) state. The
value U is U -ł ej, and of is the bare f-level position.

An explicit solution of the model (3.2) in the mean-field approximation and
using the functional integration technique over the coherent Fermi and Bose fields,
has been discussed in a separate contribution to this conference [36]. In that ap-

proach the slave-boson representation [37] biσ = ei fit is used, where ei is boson
annihilation operator and fiσ is the same operator for a pseudofermions. Here,
we underline some specific features of the normal and superconducting phases,
namely:



50 J. Spałek

1. The heavy-fermion FL state is formed if the condition|εf —μ| /p0 V 2 >1
is met, where po is the density of states at the Fermi level in the bare band. The
quasiparticle picture is such that the effective position e f of the f level is very
close to the Fermi level, i.e. εf — μ= kBTK, where TK is a new energy scale for the
problem, the so-called effective Kondo temperature. The density of quasiparticle
states at the Fermi level is p(p) = 1/2kBTK and is proportional to the effective
mass. The overall width of the quasiparticle band is D = (2kBTKW)½ >> kBTK.

2. The superconducting gap for Δk has the same zeros as the Fourier trans-
form Vk of the hybridization matrix element V m . In other words, the points k for
which the gap vanishes are determined by the point symmetry of the f atom in
the intermetallic heavy-fermion compound. A classification of the order-parameter
symmetries on the basis of point-group representations is under way [38].

3. The superconducting state disappears in the limit of integral occupancy of
the f level (n f -> 1). This means that the Kondo coupling ~ U-1 describes indeed
the superconducting state which disappears in the true Kondo-lattice regime, when
the f moments become localized.

At this point a basic question should be raised. Namely, what is the refer-
ence state for the heavy-fermion systems, which would correspond to the antifer-
romagnetic insulator for the high-temperature superconductors? Is it a magnetic
metal (viz. a rare-earth metal), or is it a Kondo-lattice state, with the localized
f moments, which are coupled antiferromagnetically to the abundant conduction
electrons? Part of the difficulty in understanding the heavy-fermion behavior is
connected with the missing knowledge of the reference state.

4. The basic superconducting properties scale in a universal manner with
TK, as discussed elsewhere [36, 39].

At the end of this section we would like to address the following question:
why the heavy-fermion systems can be represented by a Fermi liquid state and
the high-temperature superconductors cannot? There are two reasons for that.
First, HF materials are anisotropic (viz. magnetic susceptibility in UPt3 ), but
truly 3-dimensional systems in the normal state, while HTS are not. Second, the
proximity of the f level to the Fermi level in HF systems induces in a substantial
conduction-band state admixture to the f state, resulting in an essential reduction
of the effective Coulomb interaction U. Such reduction seems to be ineffective in
quasi-two-dimensional systems.

4. Conclusions

We have addressed some of the principal questions concerning the nature of
electronic states in the two systems mentioned in the title, as well as have sum-
marized the concept of real space pairing [2, 14] induced by the full form (with
three-site terms) of the kinetic exchange interaction in the first nontrivial order in
1/U. We have also discussed briefly the consequences of the proposed pairing on
the mean-field level. The most fundamental feature of the presented approach is
that it is the only model in which the superconductivity and antiferromagnetism
(or other spin-singlet type of state) are intimately connected, even if their coexis-
tence regime is practically nonexistent, as in the HTS case. Further work is needed
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to incorporate the observed magnetic moment localization into a coherent picture
of correlated fermion states in those fascinating materials, which represent a prac-
tical realization of a unification of physics of antiferromagnetic semiconductors,
superconducting metals, as well as of the transition from a magnetic insulator to
superconducting metal.
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